Skip to main content
Log in

Eye positions in fishes suggest different modes of interaction between commands and reflexes

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    By videorecordings we studied ocular counterroll in fishes during actively and passively induced postures.

  2. 2.

    During active body roll in response to the presence of obstacles, during Ventral Substrate Response (VSR) induced pitch-up, and during active pitchdown in a “head-standing” fish ocular counterroll occurs with the same gain as when the same posture is induced passively.

  3. 3.

    During VSR induced roll and under certain conditions also during Dorsal Light Response (DLR) induced roll ocular counterroll is absent.

  4. 4.

    During tail bending in the horizontal plane ocular counterrotation is more distinct during active movements than during passive ones.

  5. 5.

    During certain cases of DLR induced roll as well as during DLR induced pitch-up and pitch-down ocular counterroll is present, but less pronounced than during passively enforced abnormal postures.

  6. 6.

    We interpret the different types of oculomotor behavior during active changes of body posture as indicating that there are different modes of interaction between postural change commands initiated by higher CNS centers and vestibular circuits which are thereby set-point changed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DLR:

dorsal light response

VSR:

ventral substrate response

References

  • Bárány, R.: Über einige Augen- und Halsmuskelreflexe bei Neugeborenen. Acta Otolaryngol. (Stockh.)1, 97–102 (1918)

    Google Scholar 

  • Braemer, W., Braemer, H.: Über die Gleichgewichtsorientierung schrägstehender Fische. Z. vergl. Physiol.40, 529–542 (1958)

    Google Scholar 

  • Buddenbrock, W. von: Über die Orientierung der Krebse im Raum. Zool. Jb. Abt. Allg. Zool.34, 479–515 (1914)

    Google Scholar 

  • Easter, S.S.: Spontaneous eye movements in restrained goldfish. Vision Res.11, 333–342 (1971)

    Google Scholar 

  • Easter, S.S., Johns, P.R., Heckenlively, D.: Horizontal compensatory eye movements in goldfish (Carassius auratus). I. The normal animal. J. comp. Physiol.92, 23–35 (1974)

    Google Scholar 

  • Eaton, R.C., Bombardieri, R.A., Meyer, D.L.: The Mauthner-initiated startle response in teleost fish. J. Exp. Biol.66, 65–81 (1977)

    Google Scholar 

  • Feng, A.: The role of the electrosensory system in postural control of the weakly electric fishEigenmannia virescens. J. Neurobiol.8, 429–437 (1977)

    Google Scholar 

  • Fernald, R.D.: Fast body turns in a cichlid fish. Nature258, 228–229 (1975)

    Google Scholar 

  • Grahe, K.: Über Halsreflexe und Vestibularisreaktionen beim Menschen. Z. HNO-Heilk.3, 550–558 (1922)

    Google Scholar 

  • Harris, A.J.: Eye movements of the dogfishSqualus acanthias L. J. Exp. Biol.43, 107–130 (1965)

    Google Scholar 

  • Hassler, R., Hess, W.: Experimentelle und anatomische Befunde über die Drehbewegung und ihre nervösen Apparate. Arch. Psychiatr. Nervenkr.192, 488–526 (1954)

    Google Scholar 

  • Holst, E. von: Über den Lichtrückenreflex bei Fischen. Pubbl. Staz. Zool. Napoli15, 143–158 (1935)

    Google Scholar 

  • Holst, E. von: Quantitative Untersuchungen über Umstimmungs-vorgänge im Zentralnervensystem. I. Der Einfluß des Appetits auf das Gleichgewichtsverhalten vonPterophyllum. Z. vergl. Physiol.31, 134–148 (1948)

    Google Scholar 

  • Holst, E. von: Die Arbeitsweise des Statolithenapparates bei Fischen. Z. vergl. Physiol.32, 60–120 (1950)

    Google Scholar 

  • Kleijn, A. de: Tonische Labyrinth- und Halsreflexe auf die Augen. Pflügers Arch.186, 82–97 (1921)

    Google Scholar 

  • Lyon, E.P.: Compensatory motions in fishes. Am. J. Physiol.4, 77–82 (1900–1901)

    Google Scholar 

  • Meyer, D.L., Bullock, T.H.: The hypothesis of sense-organ-dependent tonus mechanisms: History of a concept. Ann. N.Y.Acad. Sci.290, 3–17 (1977)

    Google Scholar 

  • Meyer, D.L., Schott, D., Schaefer, K.-P.: Reizversuche im Tectum opticum freischwimmender Kabeljaue bzw. Dorsche. Pflügers Arch.314, 240–252 (1970)

    Google Scholar 

  • Meyer, D.L., Heiligenberg, W., Bullock, T.H.: The ventral substrate response. A new postural control mechanism in fishes. J. comp. Physiol.109, 59–68 (1976)

    Google Scholar 

  • Meyer, D.L., Platt, C., Distel, H.-J.: Postural control mechanisms in the upside-down catfish (Synodontis nigriventris). J. comp. Physiol.110, 323–331 (1976)

    Google Scholar 

  • Meyer, D.L., Becker, R., Graf, W.: The ventral substrate response of fishes. Comparative investigation of the VSR about the roll and the pitch axis. J. comp. Physiol.117, 209–217 (1977)

    Google Scholar 

  • Schaefer, K.-P., Schott, D., Meyer, D.L.: On the organization of neuronal circuits involved in the generation of the orienting response (visual grasp reflex). Fortschr. Zool.23, 199–212 (1975)

    Google Scholar 

  • Szentágothai, J.: Die zentrale Innervation der Augenbewegungen. Arch. Psychiatr. Nervenkr.116, 721–760 (1943)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft (ME 526/6) and NSF, NIH and NASA grants to Dr. T. H. Bullock

We wish to thank Prof. T.H. Bullock and Prof. P. Glees for critically reading the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graf, W., Meyer, D.L. Eye positions in fishes suggest different modes of interaction between commands and reflexes. J. Comp. Physiol. 128, 241–250 (1978). https://doi.org/10.1007/BF00656857

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00656857

Keywords

Navigation