Skip to main content
Log in

Physical basis for auditory frequency analysis in field crickets (Gryllidae)

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The large posterior tympanic membrane in intact field crickets vibrates up to several hundred. Angstroms in response to sounds of the same frequency and intensity as the cricket's calling song. The mechanical response is linear (Fig. 3), shows a peak near 5kHz (Figs. 2, 5), and the membrane vibrates in the same simple mode in response to tones from 4 to 20kHz (Fig. 4).

  2. 2.

    Reducing the movement of the large tympanic membrane by covering it with vaseline or by tearing holes in it (Fig. 7) causes a corresponding decrease in sensitivity of auditory interneurons (Figs. 6, 8).

  3. 3.

    The measured vibration of the small tympanic membrane is of the same order of magnitude as that of the cuticle adjacent to the membrane and it shows no selective tuning.

  4. 4.

    Introducing helium into the leg trachea changes the sensitivity of auditory interneurons. Thresholds near 5kHz increase by up to 30 dB and thresholds near 18kHz decrease by up to 13 dB (Fig. 9). This shift in tuning of the organ appears to be due to a change in the resonant frequency of the leg trachea.

  5. 5.

    Acoustical calculations are consistent with our conclusion that the dominant tuning of the large tympanic membrane and of the organ to 5 kHz is due to a tracheal resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, W. B.: Mechanical tuning of the acoustic receptor ofProdenia eridania (Cramer) (Noctuidae). J. exp. Biol.57, 297–304 (1972)

    Google Scholar 

  • Bekesy, G.V.: Experiments in hearing (ed. E.G. Wever). New York: McGraw Hill 1960

    Google Scholar 

  • Bentley, D. R.: Intracellular activity in cricket neurons during generation of song patterns. Z. vergl. Physiol.62, 267–283 (1969)

    Google Scholar 

  • Bentley, D., Hoy, R.R.: The neurobiology of cricket song. Sci. Amer.230, 33–44 (1974)

    Google Scholar 

  • Dragsten, P. R., Webb, W. W., Paton, J. A., Capranica, R. R.: Auditory membrane vibrations: Measurements at sub-Ångström levels by optical heterodyne spectroscopy. Science185, 55–57 (1974)

    Google Scholar 

  • Dragsten, P. R., Webb, W.W., Paton, J. A., Capranica, R. R.: Light scattering heterodyne interferometer for vibration measurements in auditory organs. J. acoust. Soc. Amer.60, 665–671 (1976)

    Google Scholar 

  • Fielden, A.: Transmission through the last abdominal ganglion of the dragonfly nymph,Anax imperator. J. exp. Biol.37, 832–844 (1960)

    Google Scholar 

  • Gesteland, R.C., Howland, B., Lettvin, J. Y., Pitts, W. H.: Comments on microelectrodes. Proc. IRE47, 1856–1862 (1959)

    Google Scholar 

  • Hill, K. G.: Carrier frequency as a factor in phonotactic behavior of female crickets (Teleogryllus commodus). J. comp. Physiol.93, 7–18 (1974)

    Google Scholar 

  • Hill, K., Boyan, G.S.: Directional hearing in crickets. Nature262, 390–391 (1976)

    Google Scholar 

  • Johnstone, B. M., Saunders, J. C., Johnstone, J. R.: Tympanic membrane response in the cricket. Nature227, 625–626 (1970)

    Google Scholar 

  • Kinsler, L. E., Frey, A. R.: Fundamentals of acoustics. New York: John Wiley 1962

    Google Scholar 

  • Lewis, D. B.: The physiology of the tettigoniid ear. I. The implications of the anatomy of the ear to its function in sound reception. II. The response characteristic of the ear to differential inputs: Lesion and blocking experiments. III. The response characteristic of the intact ear and some biophysical considerations, IV. A new hypothesis for acoustic orientation behavior. J. exp. Biol.60, 821–869 (1974)

    Google Scholar 

  • Loftus-Hills, J. J., Littlejohn, M.J., Hill, K. G.: Auditory sensitivity of the cricketsTeleogryllus commodus andT. oceaniens. Nature (New Biology)233, 184–185 (1971)

    Google Scholar 

  • Merrill, E.G., Ainsworth, A.: Glass-coated platinum-plated tungsten microelectrodes. Med. Biol. Eng.10, 662–672 (1972)

    Google Scholar 

  • Michelsen, A.: The physiology of the locust ear. II. Frequency discrimination based upon resonances in the tympanum. Z. vergl. Physiol.71, 63–101 (1971)

    Google Scholar 

  • Miller, P.L.: Respiration in the desert locust. II. Control of the spiracles. J. exp. Biol.37, 224–236 (1960)

    Google Scholar 

  • Morse, P. M.: Vibration and sound. New York: McGraw-Hill 1948

    Google Scholar 

  • Morse, P. M., Ingard, K.U.: Theoretical acoustics. New York: McGraw-Hill 1970

    Google Scholar 

  • Nocke, H.: Physiological aspects of sound communication in crickets (Gryllus campestris L.). J. comp. Physiol.80, 141–162 (1972)

    Google Scholar 

  • Nocke, H.: The tympanal trachea as an integral part of the ear inAcripeza reticulata Guerin (Orthoptera, Tettigonioidae). Z. Naturforsch.29c, 652–654 (1974)

    Google Scholar 

  • Nocke, H.: Physical and physiological properties of the tettigoniid (grasshopper) ear. J. comp. Physiol.100, 25–57 (1975)

    Google Scholar 

  • Paton, J. A.: Frequency analysis in the auditory system of field crickets. Ph. D. Thesis, Cornell University, Ithaca, New York 1975

    Google Scholar 

  • Popov, A. V., Shuvalov, V. F.: The spectrum, intensity, and direction of the calling song of the cricketGryllus campestris under natural conditions. J. Evol. Biochem. Fiziol.10, 72–80 (1974)

    Google Scholar 

  • Roeder, K. D.: Interneurons of the thoracic nerve cord activated by tympanic nerve fibers in noctuid moths. J. Insect Physiol.12, 1227–1244 (1966)

    Google Scholar 

  • Stout, J. F., Huber, F.: Responses of central auditory neurons of female crickets (Gryllus campestris L.) to the calling song of the male. Z. vergl. Physiol.76, 302–313 (1972)

    Google Scholar 

  • Wever, E. G., Vernon, J. A.: The auditory sensitivity of Orthoptera. Proc. Nat. Acad. Sci. USA45, 413–419 (1959)

    Google Scholar 

  • Whittaker, E.T., Watson, G.H.: A course of modern analysis, 4th ed. Cambridge: Cambridge University Press 1927

    Google Scholar 

  • Young, D., Ball, E.: Structure and development of the auditory system in the prothoracic leg of the cricketTeleogryllus commodus (Walker). I. Adult structure. Z. Zellforsch.147, 293–312 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paton, J.A., Capranica, R.R., Dragsten, P.R. et al. Physical basis for auditory frequency analysis in field crickets (Gryllidae). J. Comp. Physiol. 119, 221–240 (1977). https://doi.org/10.1007/BF00656635

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00656635

Keywords

Navigation