Skip to main content
Log in

Thermodynamics of ionic diffusion and oxidation rate equations

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Diffusional flux equations for individual lattice species and defects are related to phenomenological mass-transport equations using the concept of relative building units. These units conserve sites and charge but represent local constitutional change within a crystal resulting either from equilibration with another phase or from diffusion within the crystal. Using the example of a metal deficit, solid solution oxide (A Bξ)1−δ0, a simple thermodynamic method is arrived at for producing an exhaustive listing of units capable of participating in diffusion during an oxidation reaction. A combination of the flux contributions due to these different units then permits a calculation of the phenomenological transport coefficients in terms of microscopic kinetic and concentration variables. This description, together with a precise statement of the Gibbs-Duhem equation, permits an examination of the usual approximations in oxidation rate equations: the neglect of diffusional interactions and of nonstoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Schottky,Halbleiterprobleme, W. Schottky, ed., Vol. 4 (Fr. Vieweg und Sohn, Braunschweig, 1958).

    Google Scholar 

  2. F. A. Kröger, F. H. Stieltjes, and H. J. Vink,Philips Res. Rep. 14, 557 (1959).

    Google Scholar 

  3. D. J. Young and J. S. Kirkaldy,J. Phys. Chem. Solids 45, 781 (1984).

    Google Scholar 

  4. C. Wagner, inAtom Movements (American Society for Metals, Ohio, 1951), p. 153.

    Google Scholar 

  5. C. Wagner,Corros. Sci.,9, 91 (1969).

    Google Scholar 

  6. F. A. Kroger and H. J. Vink,Solid State Phys. 3, 307 (1956).

    Google Scholar 

  7. S. R. De Groot and P. Mazur,Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

    Google Scholar 

  8. L. Onsager,Phys. Rev. 37, 405;38, 2265 (1931).

  9. D. J. Young, E. Delamotte, and J. S. Kirkaldy,Can. J. Phys. 57, 722 (1979).

    Google Scholar 

  10. J. S. Kirkaldy and D. J. Young,Multicomponent Diffusion in Condensed Phases (Metals Society, London, in press).

  11. J. R. Manning,Diffusion Kinetics for Atoms in Crystals (Van Nostrand, Princeton, New Jersey, 1968).

    Google Scholar 

  12. Th. Neumann,J. Phys. Met. Phys. 9, 1997 (1979).

    Google Scholar 

  13. F. Gesmundo,Oxid. Met. 22, 277 (1984).

    Google Scholar 

  14. D. J. Young and F. Gesmundo,Proc. 5th Int. Conf. High Temp. Energy Related Mater. (in press).

  15. L. Himmel, R. F. Mehl and C. Birchenall,Trans. AIME 197, 827 (1953).

    Google Scholar 

  16. D. J. Young and W. W. Smeltzer,J. Electrochem. Soc. 123, 229 (1976).

    Google Scholar 

  17. D. J. Young, F. Gesmundo, and F. Viani (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, D.J., Gesmundo, F. Thermodynamics of ionic diffusion and oxidation rate equations. Oxid Met 29, 169–185 (1988). https://doi.org/10.1007/BF00656355

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00656355

Key words

Navigation