Skip to main content
Log in

A conserving approximation evaluation of superfluid density within the pair theory of superfluids

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The evaluation of the superfluid density, defined by the weak field response of the system, within the pairing theory of “pure” superfluids of Fermi or Bose statistics is considered. The need for evaluating this within what Baym and Kadanoff term a conserving approximation is emphasized. A formalism for generating manifestly conserving response kernels by analytic continuation at finite temperatures is developed and applied to the problem in question. At zero temperatures this is equivalent to the work of Nambu and others. The superfluid density is obtained in terms of the solution of a linear integral equation, the kernel and inhomogeneous term of which depends on the self-consistent equilibrium solution to the pair model. It is shown in general that this superfluid density tends to the full density at the absolute zero and vanishes above the critical temperature. Finally, some numerical work on the Bose superfluid is presented which is an extension of the calculations of Evans and Imry in the sense that a pseudopotential that more closely parameterizes the dispersion spectrum in He II is employed and that the superfluid density is evaluated as a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Baym and L. P. Kadanoff,Phys. Rev. 124, 287 (1961).

    Google Scholar 

  2. L. P. Kadanoff and G. Baym,Quantum Statistical Mechanics (W. A. Benjamin, New York, 1962).

    Google Scholar 

  3. Y. Nambu,Phys. Rev. 117, 648 (1960).

    Google Scholar 

  4. W. A. B. Evans and Y. Imry,Nuovo Cimento 63B, 155 (1969).

    Google Scholar 

  5. G. Rickayzen,Theory of Superconductivity (Wiley and Sons, New York, 1965).

    Google Scholar 

  6. J. R. Schrieffer,Theory of Superconductivity (W. A. Benjamin, New York, 1964).

    Google Scholar 

  7. P. W. Anderson,Phys. Rev. 112, 1900 (1958).

    Google Scholar 

  8. G. Rickayzen,Phys. Rev. 115, 795 (1959).

    Google Scholar 

  9. R. P. Feynman and M. Cohen,Phys. Rev. 102, 1189 (1956).

    Google Scholar 

  10. V. Ambegaokar and L. P. Kadanoff,Nuovo Cimento 22, 914 (1961).

    Google Scholar 

  11. J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  12. J. G. Valatin and D. Butler,Nuovo Cimento 10, 37 (1958).

    Google Scholar 

  13. N. N. Bogoliubov,J. Phys. USSR 11, 23 (1947).

    Google Scholar 

  14. F. de Pasquale and E. Tabet,Ann. Phys. 51, 223 (1969).

    Google Scholar 

  15. B. Roulet, J. Gavoret, and P. Nozières,Phys. Rev. 178, 1072 (1969).

    Google Scholar 

  16. G. V. Brown and M. H. Coopersmith,Phys. Rev. 178, 327 (1969).

    Google Scholar 

  17. W. A. B. Evans and G. Rickayzen,Ann. Phys. 33, 275 (1965).

    Google Scholar 

  18. T. Matsubara,Progr. Theoret. Phys. (Kyoto)14, 351 (1955).

    Google Scholar 

  19. G. Baym and N. D. Mermin,J. Math. Phys. 2, 232 (1961).

    Google Scholar 

  20. L. P. Gor'kov,Soviet Phys.—JETP 7, 505 (1958).

    Google Scholar 

  21. J. G. Valatin, inLectures in Theoretical Physics, Boulder, Colorado, 1963, W. E. Brittin and W. R. Chappell, eds. (The University of Colorado Press, Boulder, 1963), Vol. 6, p. 292.

  22. D. G. Henshaw and A. D. B. Woods,Phys. Rev. 121, 1266 (1961).

    Google Scholar 

  23. P. C. Hohenberg and P. C. Martin,Ann. Phys. 34, 291 (1965).

    Google Scholar 

  24. A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski,Methods of Quantum Field Theory in Statistical Physics (Prentice Hall, Englewood Cliffs, New Jersey, 1963).

    Google Scholar 

  25. W. E. Keller,Helium-3 and Helium-4 (Plenum Press, New York, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, W.A.B., Rashid, R.I.M.A. A conserving approximation evaluation of superfluid density within the pair theory of superfluids. J Low Temp Phys 11, 93–115 (1973). https://doi.org/10.1007/BF00655039

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655039

Keywords

Navigation