Skip to main content
Log in

Collective oscillations at long wavelengths in liquid4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The recent successful calculation of the lower collective branch of the excitation spectrum in liquid4He by Sunakawaet al. contains a phenomenological parameter φ(k) whose relation to microscopic theory is obscure. To clarify matters, an exact identity is presented for the absorptive part of the density-density correlation function and is employed to show that Pines' “zero-sound” concept of the phonon in liquid4He is accurate in the limit of infinitely long wavelengths. Since the zero-sound theory can be made to produce an explicit relation between φ(k) and the two-particle potential in the liquid, the foundation has been laid for a microscopic expression for the excitation spectrum in the range of very low wave numbers, where the classic Feynman theory of the phonon is known to be accurate. A numerical calculation of φ(k) using this expression results in a theoretical excitation spectrum which is in excellent agreement with neutron scattering measurements in the regionk≲0.4 Å −1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sunakawa, S. Yamasaki, and T. Kebukawa,Progr. Theoret. Phys. (Kyoto)41, 919 (1969);44, 565 (1970).

    Google Scholar 

  2. A. Miller, D. Pines, and P. Nozières,Phys. Rev. 127, 1452 (1962).

    Google Scholar 

  3. J. de Boer, inLiquid Helium, G. Careri, ed. (Academic Press, New York, 1963), pp. 1–50.

    Google Scholar 

  4. For a general review, see J. K. Percus,The Many-Body Problem (John Wiley and Sons, New York, 1963), Part 3; detailed expositions are given by S. Sunakawaet al., Progr. Theoret. Phys. (Kyoto)27, 589, 600 (1962); D. Bohm and B. Salt,Rev. Mod. Phys. 39, 894 (1967); G. Sposito,Phys. Rev. A2, 948 (1970).

    Google Scholar 

  5. R. A. Cowley and A. D. B. Woods,Can. J. Phys. 49, 177 (1971).

    Google Scholar 

  6. R. P. Feynman,Phys. Rev. 94, 262 (1954).

    Google Scholar 

  7. R. B. Hallock,Phys. Rev. A5, 320 (1972).

    Google Scholar 

  8. G. Sposito,J. Low Temp. Phys. 9, 495 (1972).

    Google Scholar 

  9. G. Sposito,J. Low Temp. Phys. 3, 491 (1970).

    Google Scholar 

  10. D. Pines and P. Nozières,The Theory of Quantum Liquids (W. A. Benjamin, New York, 1966), Chap. 2; for a concise summary, see D. J. Amit, inQuantum Fluids, N. Wiser and D. J. Amit, eds. (Gordon and Breach, New York, 1970), Chap. 8.

    Google Scholar 

  11. R. D. Puff,Phys. Rev. 137, A406 (1965); R. D. Puff and N. S. Gillis,Ann. Phys. (N. Y.)46, 364 (1968).

  12. M. J. Lighthill,Introduction to Fourier Analysis and Generalised Functions (Cambridge University Press, New York, 1962), p. 56.

    Google Scholar 

  13. L. P. Kadanoff and P. C. Martin,Ann. Phys. (N. Y.)24, 419 (1963); see also R. D. Puff.11

    Google Scholar 

  14. R. P. Feynman and M. Cohen,Phys. Rev. 102, 1189 (1956).

    Google Scholar 

  15. D. Pines, inQuantum Fluids, D. F. Brewer, ed. (John Wiley and Sons, New York, 1966), pp. 257–266.

    Google Scholar 

  16. G. Sposito, cited in Ref. 4.

    Google Scholar 

  17. W. C. Kerr, K. N. Pathak, and K. S. Singwi,Phys. Rev. A2, 2416 (1970).

    Google Scholar 

  18. G. Sposito,Phys. Rev. 182, 284 (1969), Appendix A.

    Google Scholar 

  19. R. Zwanzig and R. D. Mountain,J. Chem. Phys. 43, 4464 (1965).

    Google Scholar 

  20. P. Schofield, inPhysics of Simple Liquids, H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, eds. (John Wiley and Sons, New York, 1968), Chap. 13; see also P. Schofield,Proc. Phys. Soc. (London)88, 149 (1966).

    Google Scholar 

  21. J. Frenkel,Kinetic Theory of Liquids (Dover, New York, 1955), Chap. IV, Section 1.

    Google Scholar 

  22. D. Pines and C.-W. Woo,Phys. Rev. Letters 24, 1044 (1970).

    Google Scholar 

  23. T. Schneider, E. Stoll, and N. Szabo,Solid State Commun. 7, 501 (1969).

    Google Scholar 

  24. T. Schneider and E. Stoll,Solid State Commun. 5, 455 (1967); T. Schneider, E. Stoll, and N. Szabo,Helv. Phys. Acta 40, 817 (1967).

    Google Scholar 

  25. J. Hubbard and J. L. Beeby,J. Phys. C. 2, 556 (1969).

    Google Scholar 

  26. N. Mihara and R. D. Puff,Phys. Rev. 174, 221 (1968).

    Google Scholar 

  27. E. K. Achter and L. Meyer,Phys. Rev. 188, 291 (1969).

    Google Scholar 

  28. J. de Boer and A. Michels,Physica 5, 945 (1938);6, 97 (1939).

    Google Scholar 

  29. W. C. Kerr, private communication.

  30. P. Kleban,Phys. Rev. Letters 27, 657 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sposito, G. Collective oscillations at long wavelengths in liquid4He. J Low Temp Phys 12, 85–99 (1973). https://doi.org/10.1007/BF00654727

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654727

Keywords

Navigation