Skip to main content
Log in

Thermodynamic properties of liquid3He-4He mixtures near the tricritical point. II. Data analysis by the scaling-field method

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The scaling theory for tricritical phenomena by Riedel is applied to the analysis of thermodynamic properties of liquid3He-4He mixtures near the tricritical point. Within this theory experimental data for the phase diagram, the3He molar concentrationX, and the concentration susceptibility (∂X/∂Δ) T are discussed in terms of two scaling fields that are functions of the temperatureT and the difference Δ=\(\hat \mu \) 3 \(\hat \mu \) 4 of the chemical potentials of the two helium isotopes. The quantitiesX and (∂X/∂Δ) T in terms of thefields T and Δ as independent variables are obtained for the intervals −0.1<T − T t<0.53 K and −9<Δ − Δ t <0.8 J/mole, from vapor pressure and calorimetric data described in a previous paper by Goellner, Behringer, and Meyer. The transformed data are analyzed to yield the tricritical exponents, amplitudes, scaling fields, and scaling functions. The values of the tricritical exponents are found to agree with those predicted by the renormalization-group theory of Riedel and Wegner. (Logarithmic corrections are beyond the precision of the present experiment.) Relations between amplitudes are derived and tested experimentally. The (linear) scaling fields are determined by using their relationship to geometrical features of the phase diagram. The data forX and (∂X/∂Δ) T are found to scale in terms of these generalized scaling variables. The sizes of the tricritical scaling regions in the normal and superfluid phases are estimated; the range of apparent tricritical scaling is found to be appreciably larger in the normal-fluid phase than in the superfluid phase. The tricritical scaling function for the concentration susceptibility is compared with the analogous scaling function for the compressibility of pure3He near thecritical gas—liquid phase transition. Finally, when the critical line near the tricritical point is approached along a path of constant Δ<Δ t , the experimental data are found to exhibit the onset of the crossover from tricritical to critical behavior in qualitative agreement with crossover scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Griffiths and J. C. Wheeler,Phys. Rev. A 2, 1047 (1970).

    Google Scholar 

  2. E. K. Riedel,Phys. Rev. Lett. 28, 675 (1972).

    Google Scholar 

  3. G. Goellner, R. Behringer, and H. Meyer,J. Low Temp. Phys. 13, 113 (1973).

    Google Scholar 

  4. R. B. Griffiths,Phys. Rev. Lett. 24, 715 (1970).

    Google Scholar 

  5. E. K. Riedel,AIP Conf. Proc. 18, 834 (1974).

    Google Scholar 

  6. R. B. Griffiths,Phys. Rev. B 7, 545 (1973).

    Google Scholar 

  7. D. M. Saul, M. Wortis, and D. Stauffer,Phys. Rev. B 9, 4964 (1974).

    Google Scholar 

  8. E. K. Riedel, H. Meyer, and R. P. Behringer,Bull. Am. Phys. Soc. II 19, 305 (1974).

    Google Scholar 

  9. E. K. Riedel and F. J. Wegner,Phys. Rev. Lett. 29, 349 (1972).

    Google Scholar 

  10. F. J. Wegner and E. K. Riedel,Phys. Rev. B 7, 248 (1973).

    Google Scholar 

  11. E. K. Riedel and F. J. Wegner,Phys. Rev. B 9, 294 (1974).

    Google Scholar 

  12. M. E. Fisher,Phys. Rev. 176, 257 (1968).

    Google Scholar 

  13. D. D. Betts and J. R. Lothian,Can. J. Phys. 51, 2249 (1973); D. D. Betts, inPhase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic Press, New York, 1974), Vol. 3, p. 569.

    Google Scholar 

  14. B. Widom,J. Chem. Phys. 43, 3898 (1965).

    Google Scholar 

  15. L. P. Kadanoff,Physics 2, 263 (1966).

    Google Scholar 

  16. K. G. Wilson and J. Kogut,Phys. Rep. 12C, 75 (1974).

    Google Scholar 

  17. M. E. Fisher and D. R. Nelson,Phys. Rev. Lett. 32, 1350 (1974); M. E. Fisher,AIP Conf. Proc. 24 (1975).

    Google Scholar 

  18. F. J. Wegner,Phys. Rev. B 5, 4529 (1972).

    Google Scholar 

  19. M. Blume, V. J. Emery, and R. B. Griffiths,Phys. Rev. A 4, 1071 (1971).

    Google Scholar 

  20. R. B. Griffiths,Phys. Rev. 158, 176 (1967).

    Google Scholar 

  21. M. Vicentini-Missoni, J. M. H. Levelt Sengers, and M. S. Green,J. Res. NBS 73A, 563 (1969).

    Google Scholar 

  22. S. G. Sydoriak and T. R. Roberts,Phys. Rev. 118, 901 (1960).

    Google Scholar 

  23. S. T. Islander and W. Zimmermann,Phys. Rev. A 7, 188 (1973).

    Google Scholar 

  24. G. Ahlers and D. S. Greywall, inLow Temperature Physics—LT 13, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum, New York, 1974), Vol. 1, p. 586.

    Google Scholar 

  25. E. H. Graf, D. M. Lee, and J. D. Reppy,Phys. Rev. Lett. 19, 417 (1967).

    Google Scholar 

  26. P. Leiderer, D. R. Watts, and W. W. Webb,Phys. Rev. Lett. 33, 483 (1974).

    Google Scholar 

  27. E. K. Riedel, unpublished.

  28. C. A. Gearhart and W. Zimmerman,Bull. Am. Phys. Soc. II 20, 617 (1975).

    Google Scholar 

  29. B. Wallace and H. Meyer,Phys. Rev. A 2, 1567 (1970); Technical Report, Duke University (1972).

    Google Scholar 

  30. G. F. Tuthill, F. Harbus, and H. E. Stanley,Phys. Rev. Lett. 31, 527 (1973).

    Google Scholar 

  31. M. Blume, L. M. Corliss, J. M. Hastings, and E. Schiller,Phys. Rev. Lett. 32, 544 (1974).

    Google Scholar 

  32. E. K. Riedel and F. J. Wegner,Z. Physik 225, 195 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by the National Science Foundation through Grant No. GH-36882 and Grant No. GH-32007, and by a grant of the Army Research Office (Durham).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedel, E.K., Meyer, H. & Behringer, R.P. Thermodynamic properties of liquid3He-4He mixtures near the tricritical point. II. Data analysis by the scaling-field method. J Low Temp Phys 22, 369–402 (1976). https://doi.org/10.1007/BF00654713

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654713

Keywords

Navigation