Skip to main content
Log in

Experimental confirmation of the isotopic volume effect in superconducting molybdenum by means of energy-dispersive x-ray diffration at low temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Differences in the lattice constants of Mo-100 and Mo-92 have been measured by x-ray diffraction, in order to search directly for the volume effect of isotopes in a superconductor. No significant difference in the lattice constanta(Mo-100)−a(Mo-92) could be detected at 290 K, while the differences −0.0014±0.0008 and −0.0029±0.0009 Å were detected at 85.3 and 4.31 K, respectively. These values, and their temperature dependence, are considered to be theoretically reasonable. The exponent α in the isotope effect defined by Tc∝M-α is represented thermodynamically by α=−(∂ lnT c /∂ lnM)−(∂ lnT c /∂ lnV)(d lnV/d lnM). From the results, d lnV/d lnM is found to be −0.033±0.009 at 4.31 K. Then, the second term representing the isotopic volume effect is estimated to be about 0.09, with ∂ lnT c /∂ lnV≃2.81. The observed value of α is 0.33, so that the contribution of the second term, 0.09, is 27% of the value of α. It becomes quite clear that the isotopic volume effect in superconducting Mo should not be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fröhlich,Phys. Rev. 79, 845 (1950).

    Google Scholar 

  2. E. Maxwell,Phys. Rev. 78, 477 (1950).

    Google Scholar 

  3. C. A. Reynolds, B. Serin, W. H. Wright, and L. B. Nesbitt,Phys. Rev. 78, 487 (1950).

    Google Scholar 

  4. J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  5. T. H. Geballe, B. T. Matthias, G. W. Hull, Jr., and E. Corenzwit,Phys. Rev. Lett. 6, 275 (1961).

    Google Scholar 

  6. E. Bucher, J. Muller, J. L. Olsen, and C. Palmy,Phys. Lett. 15, 303 (1965).

    Google Scholar 

  7. B. T. Matthias, T. H. Geballe, E. Corenzwit, and G. W. Hull, Jr.,Phys. Rev. 129, 1025 (1963).

    Google Scholar 

  8. R. A. Hein and J. W. Gibson,Phys. Rev. 131, 1105 (1963).

    Google Scholar 

  9. E. Maxwell,Rev. Mod. Phys. 36, 144 (1964) (Discussion 20).

    Google Scholar 

  10. R. D. Fowler, J. D. G. Lindsay, R. W. White, H. H. Hill, and B. T. Matthias,Phys. Rev. Lett. 19, 892 (1967).

    Google Scholar 

  11. J. C. Swihart,Phys. Rev. 116, 45 (1959);IBM J. Res. Dev. 6, 14 (1962).

    Google Scholar 

  12. P. Morel and P. W. Anderson,Phys. Rev. 125, 1263 (1962).

    Google Scholar 

  13. J. W. Garland,Phys. Rev. Lett. 11, 114 (1963);Phys. Rev. 153, 460 (1967).

    Google Scholar 

  14. E. A. Lynton,Superconductivity (Wiley, New York, 1964); G. Rickayzen,Theory of Superconductivity (Interscience, New York, 1965); R. D. Parks,Superconductivity (Marcel Dekker, New York, 1969), Vols. 1 and 2.

    Google Scholar 

  15. J. L. Olsen, E. Bucher, M. Levy, J. Muller, E. Corenzwit, and T. Geballe,Rev. Mod. Phys. 36, 168 (1964).

    Google Scholar 

  16. T. Nakajima,J. Phys. Soc. Japan 30, 932 (1971).

    Google Scholar 

  17. T. Nakajima,J. Phys. Soc. Japan 31, 1608 (1971).

    Google Scholar 

  18. For example, V. S. Kogan,Sov. Phys.—Uspekhi 5, 951 (1963).

    Google Scholar 

  19. J. E. Schirber and B. Morosin,Phys. Rev. B 12, 117 (1975).

    Google Scholar 

  20. T. Nakajima,Phys. Stat. Sol. (b) 77, K147 (1976).

    Google Scholar 

  21. T. Nakajima, O. Terasaki, and S. Hosoya, inProc. 14th Int. Conf. Low Temp. Phys., M. Krusius and M. Vuorio, eds. (North-Holland, Amsterdam, 1975), Vol. 2, p. 81.

    Google Scholar 

  22. G. Gladstone, M. A. Jensen, and J. R. Schrieffer, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), Vol. 2, p. 775.

    Google Scholar 

  23. V. S. Kogan and V. I. Khotkevich,Sov. Phys.—JETP 15, 632 (1962).

    Google Scholar 

  24. V. S. Kogan and A. S. Bulatov,Sov. Phys.—JETP 15, 1041 (1962).

    Google Scholar 

  25. R. L. Falge, Jr.,Phys. Lett. 24A, 579 (1967).

    Google Scholar 

  26. K. A. Gschneidner, Jr., inSolid State Physics, F. Seitz and D. Turnbull, eds. (Academic Press, New York and London, 1964), Vol. 16, p. 275.

    Google Scholar 

  27. J. R. Dillinger, R. E. Fassnacht, and D. M. Jones, inProc. 10th Int. Conf. Low Temp. Phys., M. P. Malkov, ed. (Moscow, 1967), Vol. IIB, p. 233; R. E. Fassnacht and J. R. Dillinger,Phys. Rev. Lett. 17, 255 (1966);Phys. Rev. 164, 565 (1967).

  28. T. Skoskiewicz, A. W. Szafranski, W. Bujnowski, and B. Baranowski,J. Phys. C: Solid State Phys. 7, 2670 (1974).

    Google Scholar 

  29. K. Abe, K. Toma, H. Yoshinaga, and S. Morozumi,J. Less Common Metals 23, 213 (1971), and private communications.

    Google Scholar 

  30. T. H. Geballe, B. T. Matthias, E. Corenzwit, and G. W. Hull, Jr.,Phys. Rev. Lett. 8, 313 (1962).

    Google Scholar 

  31. T. Nakajima, T. Fukamachi, O. Terasaki, and S. Hosoya,J. Appl. Cryst. 9, 286 (1976).

    Google Scholar 

  32. M. E. Straumanis and C. L. Woodward,Acta Cryst. A27, 549 (1971).

    Google Scholar 

  33. H. London,Z. Phys. Chem. N. F. 16, 302 (1958).

    Google Scholar 

  34. B. Johansson and A. Rosengren,J. Phys. F: Metal Phys. 5, L15 (1975).

    Google Scholar 

  35. C. Palmy,Phys. Lett. 29A, 373 (1969); R. E. Fassnacht and J. R. Dillinger,Phys. Rev. B 2, 4442 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, T., Fukamachi, T., Terasaki, O. et al. Experimental confirmation of the isotopic volume effect in superconducting molybdenum by means of energy-dispersive x-ray diffration at low temperatures. J Low Temp Phys 27, 245–258 (1977). https://doi.org/10.1007/BF00654648

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654648

Keywords

Navigation