Skip to main content
Log in

Prediction of ternary excess enthalpy data by the UNIFAC Group Contribution method

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The UNIFAC Group Contribution method is applied to predict ternary excess enthalpies HE. In order to improve previous predictions, values for the group interaction parameters are determined from binary excess enthalpy data. These parameters are used to estimate sixty-four sets of ternary HE data which are compared with data from the literature. Results are also compared with those obtained using methods to predict ternary excess enthalpies from the binary HE data for the three binary system involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Christensen, R. W. Hanks, and R. M. Izatt,Handbook of Heats of Mixing (Wiley, New York, 1982).

    Google Scholar 

  2. J. J. Christensen, R. L. Rowley, and R. M. Izatt,Handbook of Heats of Mixing, Supplementary Volume (Wiley, New York, 1988).

    Google Scholar 

  3. C. Pando, J. A. R. Renuncio, J. A. García Calzón, J. J. Christensen, and R. M. Izatt,J. Solution Chem. 16, 503 (1987).

    Google Scholar 

  4. B. L. Larsen, P. Rasmussen, and A. Fredenslund,I. and E. C. Research 26, 2274 (1987).

    Google Scholar 

  5. A. Fredenslund, J. Gmehling, and P. Rasmussen,Vapor-Liquid Equilibrium Using UNIFAC (Elsevier, Amsterdam, 1977).

    Google Scholar 

  6. K. Kojima and K. Tochigi,Prediction of Vapor-Liquid Equilibrium by the ASOG Method (Elsevier, Amsterdam, 1979).

    Google Scholar 

  7. H. V. Kehiaian, R. Guien, A. Faradjzadeh, and L. Carbonnel,Ber. Bunsen. Phis. Chem. 85, 132 (1981).

    Google Scholar 

  8. A. Fredenslung and P. Rasmussen,Fluid Phase Equili. 24, 115 (1985).

    Google Scholar 

  9. F. Vesely, V. Dohnal, and M. Prchal,Coll. Czech. Chem. Commun. 47, 1045 (1982).

    Google Scholar 

  10. I. Nagata and K. Kazuna,J. Chem. Eng. Data 22, 79 (1977).

    Google Scholar 

  11. R. S. Ramalho and M. Ruel,Can. J. Chem. Eng. 46, 467 (1968).

    Google Scholar 

  12. K. Ridgway and P. A. Butler,J. Chem. Eng. Data 12, 509 (1967).

    Google Scholar 

  13. C. P. Brown, A. R. Mathieson, and C. J. C. Thyne,J. Chem. Soc. 4141 (1955).

  14. H. W. Schnaible, H. C. Van Ness, and J. M. Smith,AIChE J. 3, 147 (1957).

    Google Scholar 

  15. V. F. Sergeeva and I. Z. Usmanova,Zh. Obshch. Khim. 46, 722 (1976).

    Google Scholar 

  16. H. K. De Q. Jones and B. C.-Y. Lu,J. Chem. Eng. Data 11, 488 (1966).

    Google Scholar 

  17. B. C.-Y. Lu and H. K. De Q. Jones,Can. J. Chem. Eng. 44, 251 (1966).

    Google Scholar 

  18. I. Nagata, K. Fujiwara, and Y. Ogasawara,J. Chem. Thermodyn. 10, 1201 (1978).

    Google Scholar 

  19. I. Nagata and K. Tamura,J. Chem. Eng. Data 33, 283 (1988).

    Google Scholar 

  20. I. Nagata, K. Tamura, and K. Gotoh,Thermochim. Acta 104, 179 (1986).

    Google Scholar 

  21. I. Nagata and Y. Ogasawara,Thermochim. Acta 52, 155 (1982).

    Google Scholar 

  22. T. T. Lai, T. H. Doan-Nguyen, J. H. Vera, and G. A. Ratcliff,Can. J. Chem. Eng. 57, 358 (1978).

    Google Scholar 

  23. B. S. Lark, S. Kaur, and S. Singh,Thermochim. Acta 105, 219 (1986).

    Google Scholar 

  24. I. Nagata and K. Tamura,Fluid Phase Equili. 15, 67 (1983).

    Google Scholar 

  25. I. Nagata and K. Tamura,J. Chem. Thermodyn. 16, 975 (1984).

    Google Scholar 

  26. I. Nagata and K. Tamura,J. Chem. Thermodyn. 18, 827 (1986).

    Google Scholar 

  27. J. P. Shatas, Jr., M. M. Abbott, and H. C. Van Ness,J. Chem. Eng. Data 20, 406 (1975).

    Google Scholar 

  28. I. Nagata, Y. Kawamura, Y. Ogasawara, and S. Yokuriki,J. Chem. Thermodyn. 12, 223 (1980).

    Google Scholar 

  29. J. W. Morris, P. J. Mulvey, M. M. Abbott, and H. C. Van Ness,J. Chem. Eng. Data 20, 403 (1975).

    Google Scholar 

  30. M. B. Donald and K. Ridgway,J. Appl. Chem. 8, 408 (1958).

    Google Scholar 

  31. I. Nagata, K. Tamura, and S. Tokuriki,Fluid Phase Equili. 8, 75 (1982).

    Google Scholar 

  32. T. R. Lien and R. W. Missen,J. Chem. Eng. Data 19, 84 (1974).

    Google Scholar 

  33. I. Nagata, K. Tamura, and S. Tokuriki,Thermochim. Acta 47, 315 (1981).

    Google Scholar 

  34. I. Nagata and K. Tamura,Fluid Phase Equili. 24, 289 (1985).

    Google Scholar 

  35. K. Tamura and I. Nagata,J. Chem. Eng. Data 31, 410 (1986).

    Google Scholar 

  36. I. Nagata and K. Tamura,J. Chem. Thermodyn. 18, 39 (1986).

    Google Scholar 

  37. P. Nkinamubanzi, G. Charlet, and G. Delmas,Fluid Phase Equili. 20, 57 (1985).

    Google Scholar 

  38. I. Nagata and K. Tamura,J. Chem. Thermodyn. 17, 747 (1985).

    Google Scholar 

  39. F. Ratkovics, J. Liszi, M. Laszlo, B. Szeiler, and J. Devay,Acta Chim. Sci. Hung. 77, 249 (1973).

    Google Scholar 

  40. E. V. Abramov, A. S. Mirzayan, and V. I. Fedorova,Izv. Akad. Nauk. Kaz. SSR, Ser. Khim. 22 (1972).

  41. J. A. Nelder and R. Mead,Computer Journal 7, 308 (1965).

    Google Scholar 

  42. J. M. Prausnitz, T. F. Anderson, E. A. Grens, C. A. Eckert, R. Hsich, and J. P. O'Connell,Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria (Prentice Hall, Englewood Cliffs, NJ, 1980).

    Google Scholar 

  43. F. Vesely and J. Pick,Coll. Czech. Chem. Commun. 34, 1854 (1969).

    Google Scholar 

  44. F. Vesely and J. Pick,Coll. Czech. Chem. Commun. 34, 1792 (1969).

    Google Scholar 

  45. V. Ragaini, R. Santi, and S. Carrà,Lincei-Rend. Sc. Fis. Mat. e Nat. 45, 540 (1968)

    Google Scholar 

  46. J. M. Sturtevant and P. J. Lyons,J. Chem. Thermodyn. 1, 201 (1969).

    Google Scholar 

  47. H. D. Dflug, A. E. Pope, and G. C. Benson,J. Chem. Eng. Data 13, 408 (1968).

    Google Scholar 

  48. A. E. Pope, H. D. Dflug, B. Dacre, and G. C. Benson,Can. J. Chem. 45, 2665 (1967).

    Google Scholar 

  49. R. S. Ramalho and M. Ruel,J. Chem. Eng. Data 14, 20 (1969).

    Google Scholar 

  50. R. S. Ramalho and M. Ruel,Can. J. Chem. Eng. 46, 456 (1968).

    Google Scholar 

  51. L. Romani and I. Paz-Andrade,An. Quim. 70, 422 (1974).

    Google Scholar 

  52. F. Vesely, V. Hynek, V. Svoboda, and R. Holub,Coll. Czech. Chem. Commun. 39, 355 (1974).

    Google Scholar 

  53. C. G. Savini, D. R. Winterhalter, and H. C. Van Ness,J. Chem. Eng. Data 10, 171 (1965).

    Google Scholar 

  54. R. H. Stokes, and C. Burfitt,J. Chem. Thermodyn. 5, 623 (1973).

    Google Scholar 

  55. I. Nagata, H. Asano, and K. FujiwaraFluid Phase Equili. 1, 211 (1978).

    Google Scholar 

  56. J. R. Battler, and R. L. Rowley,J. Chem. Thermodyn. 17, 719 (1985).

    Google Scholar 

  57. P. Saris, J. B. Rosenholm, E. Sjoblom, and U. Henriksson,J. Phys. Chem. 90, 660 (1986).

    Google Scholar 

  58. T. B. Tai, R. S. Ramalho, and S. Kaliaguine,Can. J. Chem. Eng. 50, 772 (1972).

    Google Scholar 

  59. R. V. Mrazek and H. C. Van Ness,AIChE J. 7, 190 (1961).

    Google Scholar 

  60. T. H. Doan-Nguyen, J. H. Vera, and G. A. Ratcliff,J. Chem. Eng. Data 23, 218 (1978).

    Google Scholar 

  61. P. Kokkonen,J. Chem. Thermodyn. 18, 1165 (1968).

    Google Scholar 

  62. R. M. A. Noordtzij,Helv. Chim. Acta 39, 637 (1956).

    Google Scholar 

  63. I. Nagata, Y. Kawamura, H. Asano, K. Fujiwara, and Y. Ogasawara,Z. Phys. Chem. (Leipzig) 259, 1109 (1978).

    Google Scholar 

  64. M. B. Donald and K. Ridgeway,J. Appl. Chem. 8, 403 (1958).

    Google Scholar 

  65. M. B. Donald and K. Ridgeway,Chem. Eng. Sci. 5, 188 (1956).

    Google Scholar 

  66. I. Nagata and Y. Kawamura,Fluid Phase Equili. Ser. A 1, 1 (1979).

    Google Scholar 

  67. I. Nagata, T. Yamada, and S. Nakagawa,J. Chem. Eng. Data 20, 271 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated at the Festsymposium celebrating Dr. Henry V. Kehiaian's 60th birthday, Clermont-Ferrand, France, 17–18 May 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coto, B., Calzón, J.A.G., Pando, C. et al. Prediction of ternary excess enthalpy data by the UNIFAC Group Contribution method. J Solution Chem 20, 71–86 (1991). https://doi.org/10.1007/BF00651641

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00651641

Key words

Navigation