Skip to main content
Log in

Solid–Liquid Equilibria of Binary Systems Containing Amines: Experimental Data and Prediction with DISQUAC and UNIFAC Models

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Group contribution models can be used to predict the thermodynamic properties. The basic data used to determine the interaction parameters are VLE, HE and infinite dilution activity coefficient data. However in the absence of the required data, SLE measurements of eutectic systems are of great interest for fitting interaction parameters of group contribution methods. The knowledge of solid–liquid equilibria (SLE) of binary mixtures is essential for the design and development of separation process involving crystallization. In the present study, experimental SLE of binary mixtures containing N,N-dimethylaniline, diethylamine, cyclohexylamine, n-alkanes, and cyclohexane were measured by a static method of direct thermal analysis, using an apparatus derived from that of Smit. The experimental data obtained with this technique are compared with those predicted by Group contribution models: Mod. UNIFAC (Do) and DISQUAC models. The liquid-phase activity coefficients were also calculated. The experimental results illustrated that these systems showed a eutectic behavior, and a good agreement is obtained between experimental and predicted SLE. The use of the new c-CHNH2 group instead of the CHNH2 group in the modified UNIFAC Dortmund model showed excellent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Gryc, M. Strouhalová, B. Smetana, L. Socha, K. Michalek, Arch. Metall. Mater. 60, 2867 (2015)

    Article  Google Scholar 

  2. M.M. Lencka, J.J. Kosinski, P.M. Wang, A. Anderko, Fluid Phase Equilib. 418, 160 (2016)

    Article  Google Scholar 

  3. C. Gobble, N. Rath, J. Chickos, J. Chem. Eng. Data. 58, 2600 (2013)

    Article  Google Scholar 

  4. J.A. González, I. Alonso, C. Alonso, I.G. la Fuente, J.C. Cobos, J. Chem. Thermodyn. 56, 89 (2013)

    Article  Google Scholar 

  5. J.A. González, Ind. Eng. Chem. Res 50, 9810 (2011)

    Article  Google Scholar 

  6. A. Grenner, M. Klauck, J. Schmelzer, Fluid Phase Equilib. 233, 170 (2005)

    Article  Google Scholar 

  7. M. Klauck, T. Hahnel, S. Richter, J. Schmelzer, G. Kalies, J. Chem. Eng. Data. 63, 119 (2018)

    Article  Google Scholar 

  8. J. Lohmann, T. Röpke, J. Gmehling, J. Chem. Eng. Data. 43, 856 (1998)

    Article  Google Scholar 

  9. I. Velasco, J. Fernandez, S. Otín, H. Kehiaian, Fluid Phase Equilib. 69, 15 (1991)

    Article  Google Scholar 

  10. J.A. Gonzalez, I. Mozo, I. García de la Fuente, J.C. Cobos, Can. J. Chem. 83, 1812 (2005)

    Article  Google Scholar 

  11. M.R. Tine, H.V. Kehiaian, Fluid Phase Equilib. 32, 211 (1987)

    Article  Google Scholar 

  12. U. Domanska, M. Zawadzki, J.A. González, J. Chem. Thermodyn. 42, 545 (2010)

    Article  Google Scholar 

  13. J.A. González, U. Domanska, M. Zawadzki, J. Chem. Thermodyn. 40, 1261 (2008)

    Article  Google Scholar 

  14. U. Domańska, M. Głoskowska, J. Chem. Eng. Data. 49, 101 (2004)

    Article  Google Scholar 

  15. U. Domańska, M. Głoskowska, Fluid Phase Equilib. 216, 135 (2004)

    Article  Google Scholar 

  16. J.A. Gonzalez, I. GarcíadelaFuente, J.C. Cobos, Fluid Phase Equilib. 168, 31 (2000)

    Article  Google Scholar 

  17. F. Allal, A. Dahmani, J. Them. Anal. Cal. 73, 961 (2003)

    Article  Google Scholar 

  18. A. Dahmani, J. Jose, Fluid Phase Equilib. 134, 255 (1997)

    Article  Google Scholar 

  19. F. Allal, A. Dahmani, Fluid Phase Equilib. 190, 33 (2001)

    Article  Google Scholar 

  20. K. Khimeche, A. Dahmani, J. Chem. Thermodyn. 38, 1192 (2006)

    Article  Google Scholar 

  21. K. Khimeche, A. Dahmani, J. Therm. Anal. Cal. 84, 47 (2006)

    Article  Google Scholar 

  22. K. Khimeche, A. Dahmani, J. Chem. Eng. Data 51, 382 (2006)

    Article  Google Scholar 

  23. H.V. Kehiaian, Pure Appl. Chem. 57, 15 (1985)

    Article  Google Scholar 

  24. J. Gmehling, J. Li, M. Schiller, Ind. Eng. Chem. Res. 32, 178–193 (1993)

    Article  Google Scholar 

  25. J. Gmehling, J. Lohmann, A. Jakob, J. Li, R. Joh, Ind. Eng. Chem. Res. 37, 4876 (1998)

    Article  Google Scholar 

  26. A. Jakob, H. Grensemann, J. Lohmann, J. Gmehling, Ind. Eng. Chem. Res. 45, 7924 (2006)

    Article  Google Scholar 

  27. J.A. Riddick, W.B. Bunger, T.K. Sakano, Organic solvents, in Techniques of chemistry, vol. II, ed. by A. Weissberger (Wiley, New York, 1986)

    Google Scholar 

  28. A.M.I. Ahmed, R.G. Eades, J. Chem. Soc. Faraday Trans. 2, 2017 (1972)

    Article  Google Scholar 

  29. F. Hamann, A. Wurflinger, Phys. Chemie. 211, 85 (1999)

    Google Scholar 

  30. A. Van de Vloed, Bull. Soc. Chim. Belg. 48, 229–268 (1939)

    Google Scholar 

  31. J. Timmermans, J.F. Mattaar, Bull. Soc. Chim. Belg. 30, 213 (1921)

    Google Scholar 

  32. M.J. Rotrekl, P. Vrbka, Appl. Chem. 87, 453 (2015)

    Article  Google Scholar 

  33. W.M. Smit, Rec Trav Chim Pays-Bas (1956). https://doi.org/10.1002/recl.19560751112

    Article  Google Scholar 

  34. M.A. Michou-Saucet, J. Jose, L.M. Riollot, Thermochim. Acta. 68, 207 (1983)

    Article  Google Scholar 

  35. A. Dahmani, A. Ait Kaci, Int. DATA Ser., Sel. Data Mixtures, Ser. A. 141, 147 (1988)

    Google Scholar 

  36. A. Dahmani, I. Mokbel, G. Ghanem, J. Jose, J. Chim. Phys. (1995). https://doi.org/10.1051/jcp/1995921093

    Article  Google Scholar 

  37. A. Dahmani, J. Jose, A. Kaci, J. Chim. Phys. (1996). https://doi.org/10.1051/jcp/1996932001

    Article  Google Scholar 

  38. M. Klauck, R. Silbermann, R. Metasch, S. Unger, J. Schmelzer, Fluid Phase Equilib. 314, 169 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayrouz Djellouli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djellouli, F., Dahmani, A. & Hassani, A. Solid–Liquid Equilibria of Binary Systems Containing Amines: Experimental Data and Prediction with DISQUAC and UNIFAC Models. Int J Thermophys 42, 39 (2021). https://doi.org/10.1007/s10765-020-02789-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02789-3

Keywords

Navigation