Skip to main content
Log in

Calorimetric determination of thermodynamic quantities for chemical reactions in the system CO2−NaOH−H2O from 225 to 325°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The phase equilibrium CO2(g)=CO2(aq) and the aqueous reactions CO 2−3 +H+=HCO 3 , HCO 3 +H+=CO2(aq)+H2O, and Na++CO 2−3 =NaCO 3 were studied from 225 to 325°C using a flow calorimetric technique. Heats of mixing of gaseous CO2 with liquid H2O and with aqueous NaOH solutions were measured at these temperatures. Log K, ΔH, ΔS, and ΔCp values were determined for these reactions from the heat of mixing data. Equations for these thermodynamic quantities valid at infinite dilution (I=0) and 12.4 MPa are given as a function of temperature from 225 to 325°C. The log K and ΔH values agree well with literature values at these temperatures for the first and third reactions, but not for the second reaction. No previous results have been reported for the fourth reaction at high temperatures. The isocoulombic reaction principle is tested using the log K values determined in this study. This principle is found to be valid for the reactions where each charge on one side of the equation is balanced on the other side by a charge of the same sign and magnitude, but not for the reaction where two single negative charges (HCO 3 and OH) are balanced by one double negative charge (CO 2−3 ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Chen, S. E. Gillespie, J. L. Oscarson, and R. M. Izatt,J. Solution Chem. (in press).

  2. A. J. Ellis,Am. J. Sci. 257, 217 (1959).

    Google Scholar 

  3. A. J. Ellis,Am. J. Sci. 257, 287 (1959).

    Google Scholar 

  4. A. J. Ellis and R. M. Golding,Am. J. Sci. 261, 47 (1963).

    Google Scholar 

  5. I. L. Khodakovskiy, B. N. Ryzhenko, and G. B. Naumov,Geochem. Int. 5, 1200 (1968).

    Google Scholar 

  6. V. B. Naumov, A. Kh. Khakimov, and I. L. Khodakovskiy,Geochem. Int. 11, 31 (1974).

    Google Scholar 

  7. R. C. Murray, Jr. and J. W. Cobble, inProceedings of the 41 st International Water Conference (Pittsburgh, Pennsylvania, 1980).

  8. D. M. Mason and R. Kao, inThermodynamics of Aqueous Systems with Industrial Applications, ACS Symposium Series No. 133, S. A. Newman, ed., (American Chemical Society, Washington, D.C., 1980).

    Google Scholar 

  9. H. C. Helgeson,Am. J. Sci. 267, 729 (1969).

    Google Scholar 

  10. L. N. Plummer and E. Busenberg,Geochim. Cosmochim. Acta 46, 1011 (1982).

    Google Scholar 

  11. T. J. Morrison and F. Billett,J. Chem. Soc. 3819 (1952).

  12. R. F. Weiss,Mar. Chem. 2, 203 (1974).

    Google Scholar 

  13. G. Houghton, A. M. Mclean, and P. D. Ritchie,Chem. Eng. Sci. 6, 132 (1957).

    Google Scholar 

  14. S. D. Malinin,Geochemistry 292 (1959).

  15. B. N. Ryzhenko,Geochemistry 463 (1963).

  16. C. S. Patterson, R. H. Busey, and R. E. Mesmer,J. Solution Chem. 13, 647 (1984).

    Google Scholar 

  17. A. J. Read,J. Solution Chem. 4, 53 (1975).

    Google Scholar 

  18. C. S. Patterson, G. H. Slocum, R. H. Busey, and R. E. Mesmer,Geochim. Cosmochim. Acta 46, 1653 (1982).

    Google Scholar 

  19. H. C. Helgeson,J. Phys. Chem. 71, 3121 (1967).

    Google Scholar 

  20. S. Arnorsson and S. Sigurdsson,Geochim. Cosmochim. Acta 46, 1513 (1982).

    Google Scholar 

  21. J. A. Barbero, L. G. Hepler, K. G. McCurdy, and P. R. Tremaine,Can. J. Chem. 61, 2509 (1983).

    Google Scholar 

  22. R. S. Smith, C. J. Popp, and D. I. Norman,Geochim. Cosmochim. Acta 50, 137 (1986).

    Google Scholar 

  23. B. N. Ryzhenko and O. V. Bryzgalin,Geochem. Int. 24, 122 (1987).

    Google Scholar 

  24. R. M. Garrels, M. E. Thompson, and E. Siever,Am. J. Sci. 259, 24 (1961).

    Google Scholar 

  25. R. M. Garrels and M. E. Thompson,Am. J. Sci. 260, 57 (1962).

    Google Scholar 

  26. J. N. Butler and R. Huston,J. Phys. Chem. 74, 2976 (1970).

    Google Scholar 

  27. R. M. Pytkowicz and J. E. Hawley,Limnol. Oceanogr. 19, 223 (1974).

    Google Scholar 

  28. M. Whitfield,Limnol. Oceanogr. 19, 235 (1974).

    Google Scholar 

  29. C. P. Kerr, inThermodynamics of Aqueous Systems with Industrial Applications, ACS Symposium Series No. 133, S. A. Newman, ed., (American Chemical Society, Washington, D.C., 1980).

    Google Scholar 

  30. A. H. Truesdell and B. F. Jones,J. Res. U. S. Geol. Surv. 2, 233 (1974).

    Google Scholar 

  31. J. I. Bischoff and W. E. Seyfried,Am. J. Sci. 278, 838 (1978).

    Google Scholar 

  32. N. I. Khitarov, B. N. Ryzhenko, and E. B. Lebedev,Geochemistry 42 (1963).

  33. R. M. Garrels and C. H. Crist,Solutions, Minerals, and Equilibria (Harper and Row, New York, 1965).

    Google Scholar 

  34. L. Haar, J. S. Gallagher, and G. S. Kell,NBS/NRC STEAM TABLES: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units (Hemisphere, Washington, 1984).

    Google Scholar 

  35. C. A. Meyer, R. B. McClintock, G. J. Silvestri, and R. C. Spencer, Jr.,ASME Steam Tables: Thermodynamic and Transport Properties of Steam, 5th edn., (The American Society of Mechanical Engineers, New York, 1983).

    Google Scholar 

  36. J. H. Keenan, F. G. Keyes, P. G. Hill, and J. G. Moore,Steam Tables (Wiley, New York, 1969).

    Google Scholar 

  37. A. Saul and W. Wagner,J. Phys. Chem. Ref. Data 18, 1537 (1989).

    Google Scholar 

  38. P. G. Hill,J. Phys. Chem. Ref. Data 19, 1231 (1990).

    Google Scholar 

  39. W. T. Lindsay, Jr., inProceedings of the 41 st International Water Conference (Pittsburgh, Pennsylvania, 1980).

  40. W. T. Lindsay, Jr., inThe ASME Handbook on Water Technology for Thermal Power Systems, P. Cohen, ed., (The American Society of Mechanical Engineers, New York, 1989) Chap. 7.

    Google Scholar 

  41. J. M. Simonson and R. J. Ryther,J. Chem. Eng. Data 34, 57 (1989).

    Google Scholar 

  42. J. L. Oscarson, X. Chen, S. E. Gillespie, and R. M. Izatt,Thermochim. Acta 185, 51 (1991).

    Google Scholar 

  43. X. Chen, Ph.D. Dissertation, Brigham Young University (Provo, Utah, 1991).

  44. R. M. Izatt, J. L. Oscarson, X. Chen, and S. E. Gillespie,Determination of Thermodynamic Data for Modeling Corrosion. Volume 3: CO 2 −NaOH−H 2 O System, EPRI Report NP-5708 (Electric Power Research Institute, Palo Alto, California, 1992).

    Google Scholar 

  45. R. Nakamura, G. J. F. Breedveld, and J. M. Prausnitz,Ind. Eng. Chem. Process Des. Dev. 15, 557 (1976).

    Google Scholar 

  46. A. R. Parkinson, R. J. Balling, and J. C. Free, inProceedings ASME Int. Computers in Eng. Conf. (Las Vegas, Nevada, 1984).

  47. J. W. Cobble, private communication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Taken in part from the Ph.D. Dissertation of X. Chen, Brigham Young University, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xuemin Chen, Gillespie, S.E., Oscarson, J.L. et al. Calorimetric determination of thermodynamic quantities for chemical reactions in the system CO2−NaOH−H2O from 225 to 325°C. J Solution Chem 21, 825–848 (1992). https://doi.org/10.1007/BF00651511

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00651511

Key words

Navigation