Skip to main content
Log in

Aqueous solubilities of praseodymium, europium, and lutetium sulfates

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The aqueous solubilities of finely divided Pr2(SO4)3·8H2O(cr), Eu2(SO4)3·8H2O(cr), and Lu2(SO4)3·8H2O(cr) have been measured as a function of time at 25°C using isothermal saturation. Solubilities of the latter two salts showed a steady decrease with time, whereas Pr2(SO4)3·8H2O(cr) showed no such variation within the accuracy of the determinations. The turbidities of these filtered saturated solutions also decreased with time, and indicate that some colloidal rare earth sulfates were present. These colloidal particles (<0.2 μm) have a large surface area, which contributes to the Gibbs energy of the solid phase, thus giving rise to enhanced solubilities. The micro-particles also grow with time, thereby reducing the surface area contribution to the Gibbs energy and also leaving fewer particles to pass through the filters. Extrapolation of solubilities to infinite time gives the solubilities of macrocurstalline Eu2(SO4)3·8H2O and Lu2(SO4)3·8H2O. Previous solubility data for Lu2(SO4)3, at 20 and 40°C, yield an interpolated value at 25°C that is about 30% low. Densities were also measured at several concentrations of each salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Stewart,Data for Radioactive Waste Management and Nuclear Applications (Wiley Interscience, New York, 1985).

    Google Scholar 

  2. J. A. Rard,Chem. Rev. 85, 555 (1985).

    Google Scholar 

  3. A. I. Barabash, L. L. Zaitseva, and V. S. Il'yashenko,Russ. J. Inorg. Chem. (Engl. Trans.) 17, 1039 (1972).

    Google Scholar 

  4. K. S. Jackson and G. Rienäcker,J. Chem. Soc., 1687 (1930).

  5. F. H. Spedding and S. Jaffe,J. Am. Chem. Soc. 76, 882 (1954).

    Google Scholar 

  6. A. V. Shevchuk and V. M. Skorikov,Russ. J. Inorg. Chem. (Engl. Trans.) 25, 622 (1980).

    Google Scholar 

  7. G. Brunisholz and M. Nozari,Revue Chim. Miner. 1, 673 (1964).

    Google Scholar 

  8. F. Wirth,Z. Anorg. Chem. 76, 174 (1912).

    Google Scholar 

  9. J. A. Rard, L. E. Shiers, D. J. Heiser, and F. H. Spedding,J. Chem. Eng. Data 22, 337 (1977).

    Google Scholar 

  10. J. A. Rard and F. H. Spedding,J. Chem. Eng. Data 26, 391 (1981).

    Google Scholar 

  11. J. A. Rard and F. H. Spedding,J. Chem. Eng. Data 27, 454 (1982).

    Google Scholar 

  12. J. A. Rard,J. Chem. Eng. Data 32, 334 (1987).

    Google Scholar 

  13. T. Moeller and H. E. Kremers,Chem. Rev. 37, 97 (1945).

    Google Scholar 

  14. W. L. Marshall and R. Slusher,J. Inorg. Nucl. Chem. 37, 2171 (1975).

    Google Scholar 

  15. M. M. Farrow and N. Purdie,J. Solution Chem. 2, 503 (1973).

    Google Scholar 

  16. W. W. Wendlandt,J. Inorg. Nucl. Chem. 7, 51 (1958).

    Google Scholar 

  17. M. W. Nathans and W. W. Wendlandt,J. Inorg. Nucl. Chem. 24, 869 (1962).

    Google Scholar 

  18. A. N. Pokrovskii and L. M. Kovba,Russ. J. Inorg. Chem. (Engl. Trans.) 21, 305 (1976).

    Google Scholar 

  19. B. V. Enüstün and J. Turkevich,J. Am. Chem. Soc. 82, 4502 (1960).

    Google Scholar 

  20. J. W. Haynes and J. J. Brown, Jr.,J. Electrochem. Soc. 115, 1060 (1968).

    Google Scholar 

  21. V. I. Ivanov,Sov. Phys.-Crystallog. (Engl. Trans.) 9, 553 (1965).

    Google Scholar 

  22. L. A. Aslanov, V. B. Rybakov, B. M. Ionov, M. A. Porai-Koshits, and V. I. Ivanov,Proc. Acad. Sci. USSR, Chem. Sect. (Engl. Trans.) 204, 508 (1972).

    Google Scholar 

  23. E. G. Sherry,J. Solid State Chem. 19, 271 (1976).

    Google Scholar 

  24. I. S. Ahmed Farag, M. A. El-Kordy, and N. A. Ahmed,Z. Kristallog. 155, 165 (1981).

    Google Scholar 

  25. W. Pies and A. Weiss, “Crystal Structure Data of Inorganic Compounds”, K.-H. Hellwege and A. M. Hellwege, eds.; Landolt-Börnstein New Series, Vol. III/7b3 (Springer-Verlag, Berlin, 1982), pp. 179–184.

    Google Scholar 

  26. L. L. Zaitseva, V. S. Il'yashenko, M. I. Konarev, L. N. Konovalov, L. V. Lipis, and N. T. Chebotarev,Russ. J. Inorg. Chem. (Engl. Trans.) 10, 961 (1965).

    Google Scholar 

  27. J. A. Rard and D. G. Miller,J. Chem. Eng. Data 29, 151 (1984).

    Google Scholar 

  28. G. S. Kell,J. Chem. Eng. Data 20, 97 (1975).

    Google Scholar 

  29. F. H. Spedding, P. F. Cullen, and A. Habenschuss,J. Phys. Chem. 78, 1106 (1974).

    Google Scholar 

  30. R. G. de Carvalho and G. R. Choppin,J. Inorg. Nucl. Chem. 29, 737 (1967).

    Google Scholar 

  31. A. A. Sopueva, K. S. Sulaimankulov, and K. N. Nogoev,Russ. J. Inorg. Chem. (Engl. Trans.) 20, 445 (1975).

    Google Scholar 

  32. L. I. Kovalenko, K. Sulaimankulov, and B. MurzubraimovRuss. J. Inorg. Chem. (Engl. Trans.) 25, 1268 (1968).

    Google Scholar 

  33. F. H. Spedding, J. A. Rard, and V. W. Saeger,J. Chem. Eng. Data 19, 373 (1974).

    Google Scholar 

  34. J. A. Rard and F. H. Spedding,J. Phys. Chem. 79, 257 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rard, J.A. Aqueous solubilities of praseodymium, europium, and lutetium sulfates. J Solution Chem 17, 499–517 (1988). https://doi.org/10.1007/BF00651459

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00651459

Key words

Navigation