Skip to main content
Log in

Pressure and temperature effects on the excess deuteron and proton conductance

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The limiting molar conductances Λ° of deuterium chloride DCl in D2O were determined as a function of pressure and temperature in order to examine the proton-jump mechanism in detail. The excess deuteron conductances λ°E(D +), as estimated by the equation [λ°E(D +) = Λ°(DCl/D 2 O) − Λ°(KCl/D 2 O)], increases with an increase in the pressure and temperature as well as the excess proton conductance [λ°E(H +) = Λ°(HCl/H 2 O) − Λ°(KCl/H 2 O)]. The isotope effect on the excess conductances, however, depends on the pressure and temperature contrary to the model proposed by Conway et al.: λ°E(H +)/λ°E(D +) decreases with increasing pressure and temperature. The magnitude of the decrease with pressure becomes more prominent at lower temperature. These results are discussed in terms of the pre-rotation of adjacent water molecules, the bending of hydrogen bonds with pressure, and the difference in strength of hydrogen bonds between D2O and H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Conway, inModern Aspects of Electrochemistry, Vol. 3, J. O'M. Bockris and B. E. Conway, eds., (Butterworths, London, 1964), Chap. 2.

    Google Scholar 

  2. A. Gierer,Z. Naturforsch. 5a, 581 (1950).

    Google Scholar 

  3. A. Gierer and K. Wirtz,J. Phys. Chem. 56, 914 (1952).

    Google Scholar 

  4. A. Eucken,Z. Elektrochem. Angew. Phys. Chem. 52, 225 (1948);Nachr. Ges Wiss. Gsttingen Math-Phys. Kl. 1 (1949).

    Google Scholar 

  5. B. E. Conway, J. O'M. Bockris, and H. Linton,J. Chem. Phys. 24, 834 (1956).

    Google Scholar 

  6. M. Nakahara and J. Osugi,Rev. Phys. Chem. Jpn. 47, 1 (1977).

    Google Scholar 

  7. M. Ueno, M. Nakahara, and J. Osugi,J. Solution Chem. 8, 881 (1979).

    Google Scholar 

  8. M. Nakahara, N. Takisawa, and J. Osugi,J. Phys. Chem. 85, 112 (1981).

    Google Scholar 

  9. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  10. C. T. Chen and F. J. Millero,J. Chem. Phys. 75, 3553 (1981).

    Google Scholar 

  11. G. S. Kell,J. Chem. Eng. Data 20, 97 (1975).

    Google Scholar 

  12. C. T. Chen, R. A. Fine, and F. J. Millero,J. Chem. Phys. 66, 2142 (1977).

    Google Scholar 

  13. The values of the viscosity at 1 atm are taken from Ref. 14 for D2O and Ref. 16 for H2O: they are multiplied by the relative viscosities at high pressure and various temperatures, which are obtained by fitting the relative viscosities at various temperatures at each pressure in Ref. 15 for D2O and Ref. 17 for H2O to a fifth-order polynominal in temperature.

  14. F. J. Millero, R. Dexter, and E. Hoff,J. Chem. Eng. Data 16, 85 (1971).

    Google Scholar 

  15. A. Harlow, Ph.D. Thesis, London University (1969).

  16. L. Korson, W. Dorst-Hansen, and F. J. Millero,J. Phys. Chem. 73, 34 (1969).

    Google Scholar 

  17. J. B. Cappi, Ph.D. Thesis, London University (1964); K. E. Bett and J. B. Cappi,Nature 207, 620 (1965).

  18. The values of dielectric constant are obtained by assuming that the logalithmic form of the quantity reported in Ref. 19 up to 3 kbar in the temperature range 10–40°C is expressed by a linear function of temperature at high pressure as well as 1 atm as shown in Ref. 20.

  19. K. R. Srinivasan and R. L. Kay,J. Chem. Phys. 60, 3645 (1974).

    Google Scholar 

  20. R. L. Kay, G. A. Vidulich, and K. S. Privadi,J. Phys. Chem. 73, 445 (1969).

    Google Scholar 

  21. Bunseki Kagaku Binran, The Chemical Society of Japan, ed., (Maruzen, Tokyo, 1971), p. 235.

    Google Scholar 

  22. L. E. Strong,J. Chem. Eng. Data 25, 104 (1980).

    Google Scholar 

  23. B. B. Owen and H. Zeldes,J. Chem. Phys. 18, 1083 (1950).

    Google Scholar 

  24. G. C. Benson and A. R. Gordon,J. Chem. Phys. 13, 473 (1945).

    Google Scholar 

  25. J. F. Lind, J. J. Zwolenik, and R. M. Fuoss,J. Am. Chem. Soc. 81, 1557 (1959).

    Google Scholar 

  26. The cell constant K of a glass cell at 65°C was obtained by taking into consideration the expansibility of glass, while the cell constant of a Teflon cell at 65°C was estimated by using the relation ofK (Teflon)/R (Teflon)=K (glass)/R (glass), whereR is the resistance of a 0.01M KCl solution.

  27. M. Ueno, N. Tsuchihashi, and K. Shimizu,Bull. Chem. Soc. Jpn. 58, 2929 (1985).

    Google Scholar 

  28. R. L. Kay,J. Am. Chem. Soc. 82, 2099 (1960).

    Google Scholar 

  29. R. M. Fuoss and F. Accascina,Electrolytic Conductance (Interscience, New York, 1959), Chap. 15.

    Google Scholar 

  30. P. C. CarmenJ. Phys. Chem. 74, 1653 (1970).

    Google Scholar 

  31. M. Ueno, A. Yoneda, N. Tsuchihashi, and K. Shimizu,J. Chem. Phys. 86, 4678 (1979).

    Google Scholar 

  32. K. Shimizu and N. Tsuchihashi,Rev. Phys. Chem. Jpn. 49, 18 (1979).

    Google Scholar 

  33. M. Ueno, K. Ito, N. Tsuchihashi, and K. Shimizu,Bull. Chem. Soc. Jpn. 59, 1175 (1986).

    Google Scholar 

  34. M. Nakahara, M. Zenke, M. Ueno, and K. Shimizu,J. Chem. Phys. 83, 280 (1985).

    Google Scholar 

  35. M. Ueno, N. Tsuchihashi, and K. Shimizu,J. Chem. Phys. 92, 2548 (1990).

    Google Scholar 

  36. S. D. Hamann and W. Strauss,Trans. Faraday Soc. 51, 1684 (1955).

    Google Scholar 

  37. S. D. Hamann,Physicochemical Effects of Pressure (Butterworth, London, 1957), Chap. 7.

    Google Scholar 

  38. A. J. Ellis,J. Chem. Soc. 3689 (1959).

  39. R. A. Horne, B. R. Myers, and G. R. Frysinger,J. Chem. Phys. 39, 2666 (1963).

    Google Scholar 

  40. E. U. Franck, D. Hartmann, and F. Hensel,Discuss. Faraday Soc. 39, 200 (1965).

    Google Scholar 

  41. M. Nakahara and J. Osugi,Rev. Phys. Chem. Jpn. 47, 1 (1977).

    Google Scholar 

  42. G. A. Gaballa and G. A. Neilson,Mol. Phys. 50, 97 (1983).

    Google Scholar 

  43. A. H. Narten, M. D. Danford, and H. A. Levy,Discuss. Faraday Soc. 43, 97 (1967).

    Google Scholar 

  44. J. Morgan and B. E. Warren,J. Chem. Phys. 6, 666 (1938).

    Google Scholar 

  45. F. H. Stillinger and A. Rahman,J. Chem. Phys. 61, 4973 (1974).

    Google Scholar 

  46. R. W. Impey, M. L. Klein, and I. R. McDonald,J. Chem. Phys. 74, 647, (1981).

    Google Scholar 

  47. E. Whalley,J. Chem. Phys. 63, 5205 (1975).

    Google Scholar 

  48. E. H. Grant and R. Shack,Trans. Faraday Soc. 65, 1519 (1969).

    Google Scholar 

  49. R. A. Kuharski and J. Rossky,J. Chem. Phys.,82, 5164 (1985).

    Google Scholar 

  50. D. Eisenberg and W. Kauzmann,The Structure and Properties of Water (Oxford University, London, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tada, Y., Ueno, M., Tsuchihashi, N. et al. Pressure and temperature effects on the excess deuteron and proton conductance. J Solution Chem 21, 971–985 (1992). https://doi.org/10.1007/BF00650873

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650873

Key words

Navigation