Skip to main content
Log in

Viscosity of aqueous solutions of univalent electrolytes from 5 to 95°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Viscosity measurements of a series of univalent electrolytes in water have been performed with an automatic dual viscometer system, covering the temperature range of 5 to 95°C. Results are discussed in terms of Jones-DoleB andD coefficients. TheB coefficients of the salts are divided into their ionic contributions according toB(K+)=B(Cl) at all temperatures. On a simple model intrinsic and structural contributions inB are calculated for the different ions. The structural term depends exponentially on the temperature in a unique manner, independent of the ion (except for Li+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Jones and M. Dole,J. Am. Chem. Soc. 51, 2950 (1929).

    Google Scholar 

  2. G. Jones and S. K. Talley,J. Am. Chem. Soc. 55, 4124 (1933).

    Google Scholar 

  3. H. Falkenhagen,Theorie der Elektrolyte (S. Hirzel Verlag, Stuttgart, 1971), p. 256.

    Google Scholar 

  4. G. Jones and S. K. Talley,J. Am. Chem. Soc. 55, 624 (1933).

    Google Scholar 

  5. M. Kaminsky,Z. Phys. Chem. N.F. 5, 154 (1955).

    Google Scholar 

  6. M. Kaminsky,Z. Phys. Chem. N.F. 8, 173 (1956).

    Google Scholar 

  7. M. Kaminsky,Z. Phys. Chem. N.F. 12, 206 (1957).

    Google Scholar 

  8. E. Hückel and H. Schaaf,Z. Phys. Chem. N.F. 21, 326 (1959).

    Google Scholar 

  9. R. H. Stokes and R. Mills,Viscosity of Electrolytes and Related Properties (Pergamon, New York, 1965), Chapters 2 and 4.

    Google Scholar 

  10. R. L. Kay, T. Vituccio, C. Zawoyski, and D. F. Evans,J. Phys. Chem. 70, 2336 (1966).

    Google Scholar 

  11. J. E. Desnoyers and G. Perron,J. Solution Chem. 1, 199 (1972).

    Google Scholar 

  12. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  13. R. C. Hardy and R. L. Cottington,J. Res. Natl. Bur. Stand. 42, 573 (1949);

    Google Scholar 

  14. J. F. Swindels, J. R. Coe, Jr., and T. B. Godfrey,J. Res. Natl. Bur. Stand. 48, 1 (1952)

    Google Scholar 

  15. R. S. Marvin and D. L. Hogenboom inAmerican Institute of Physics Handbook, D. E. Gray, ed. (McGraw-Hill, New York, 1972), 3rd edn., pp. 2–187.

    Google Scholar 

  16. J. Kestin, M. Sokolov, and W. A. Wakeham,J. Phsy. Chem. Ref. Data 7, 941 (1978).

    Google Scholar 

  17. K. G. Lawrence,Chem. Ind., 1338 (1966).

  18. L. D. Eicher and B. J. Zwolinski,J. Phys. Chem. 75, 2016 (1971).

    Google Scholar 

  19. W. M. Cox and J. H. Wolfenden,Proc. Roy. Soc. A 145, 475 (1934).

    Google Scholar 

  20. G. Jones and R. E. Stauffer,J. Am. Chem. Soc. 59, 1630 (1937).

    Google Scholar 

  21. M. R. Cannon, R. E. Manning, and J. D. Bell,Anal. Chem. 32, 355 (1960).

    Google Scholar 

  22. R. S. Marvin,J. Res. Natl. Bur. Stand Sect. A 75, 535 (1971).

    Google Scholar 

  23. D. Eagland and G. Pilling,J. Phys. Chem. 76, 1902 (1972).

    Google Scholar 

  24. Gmelin,Handbuch der Anorganischen Chemie (Springer Verlag, Berlin, 8th edition).

  25. S. Schiavo, B. Scrosati, and A. Tommasini,Ric. Sci. 37, 211 (1967).

    Google Scholar 

  26. O. Kratky, H. Leopold, and H. Stabinger,Angew. Phys. 27, 273 (1969).

    Google Scholar 

  27. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  28. F. A. Goncalves and J. Kestin,Ber. Bunsenges. Phys. Chem. 81, 1156 (1977).

    Google Scholar 

  29. N. Martinus, C. D. Sinclair, and C. A. Vincent,Electrochim. Acta 22, 1183 (1977).

    Google Scholar 

  30. W. D. Kraeft and J. Einfeldt,Z. Phys. Chem. 237, 267 (1968);239, 415 (1968).

    Google Scholar 

  31. A. Einstein,Ann. Phys. 19, 289 (1906);34, 591 (1911).

    Google Scholar 

  32. R. Simha,J. Phys. Chem. 44, 25 (1940).

    Google Scholar 

  33. R. W. Gurney,Ionic Processes in Solution (McGraw-Hill, New York, 1953), p. 168.

    Google Scholar 

  34. H. S. Frank and W. Y. Wen,Discuss. Faraday Soc. 24, 133 (1957).

    Google Scholar 

  35. M. Kaminsky,Discuss. Faraday Soc. 24, 171 (1957).

    Google Scholar 

  36. G. K. Batchelor,Introduction to Fluid Dynamics (Cambridge University Press, 1967), Chapter XVIII, p. 253.

  37. T. F. Ford,J. Phys. Chem. 64, 1168 (1960).

    Google Scholar 

  38. S. Glasstone, K. J. Laidler, and H. Eyring,The Theory of Rate Processes (McGraw-Hill, New York, 1941), Chapter IX.

    Google Scholar 

  39. J. H. Hildebrand,Viscosity and Diffusivity (Wiley, New York, 1977).

    Google Scholar 

  40. H. S. Frank and M. W. Evans,J. Chem. Phys. 13, 507 (1945).

    Google Scholar 

  41. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd rev. edn. (Butterworths, London, 1965), p. 128.

    Google Scholar 

  42. D. G. Thomas,J. Colloid Sci. 20, 267 (1965).

    Google Scholar 

  43. V. Vand,J. Phys. Chem. 52, 277 (1948).

    Google Scholar 

  44. A. T. Hagler, H. A. Scheraga, and G. Némethy,J. Phys. Chem. 76, 3229 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Out, D.J.P., Los, J.M. Viscosity of aqueous solutions of univalent electrolytes from 5 to 95°C. J Solution Chem 9, 19–35 (1980). https://doi.org/10.1007/BF00650134

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650134

Key words

Navigation