Skip to main content
Log in

Hydrophobic interactions and osmotic second virial coefficients for methanol in water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A recent theory of the hydrophobic effect together with a simple model for an alcohol molecule is used to calculate the osmotic (McMillan-Mayer) second virial coefficientB 2 for methanol dissolved in water. We use this calculation to study the validity of common arguments that try to draw microscopic structural information from experimental virial coefficient data. In disagreement with many workers, we find that the hydrophobic interaction between hard spheres in water is attractive and that its strength diminishes as temperature is raised. Models that have come to the opposite conclusions have neglected complications inherent to real solutes such as the role of the hydroxy groups in affecting the correlations between the apolar portions of neighboring alcohols. The calculations reported here indicate that this neglect is a poor approximation for methanol. Our calculations also show that osmotic virial coefficients are sensitive to subtle details in the potentials of mean force. Therefore, slowly varying (e.g., dispersion) interactions may also contribute significantly to the values of these coefficients without significantly changing the solvent structure near the solute molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. R. Pratt and D. Chandler,J. Chem. Phys. 67, 3683 (1977).

    Google Scholar 

  2. W. Kauzmann,Adv. Protein Chem. 14, 1 (1959).

    Google Scholar 

  3. C. Tanford;Science 200, 1012 (1978).

    Google Scholar 

  4. F. M. Richards,Annu. Rev. Biophys. Bioeng. 6, 151 (1977).

    Google Scholar 

  5. C. Tanford,The Hydrophobic Effect (Wiley-Interscience, New York, 1973).

    Google Scholar 

  6. J. J. Kozak, W. S. Knight, and W. Kauzmann,J. Chem. Phys. 48, 675 (1968).

    Google Scholar 

  7. H. L. Friedman and C. V. Krishnan,J. Solution Chem. 2, 119 (1973).

    Google Scholar 

  8. J. J. Savage and R. H. Wood,J. Solution Chem. 5, 733 (1976).

    Google Scholar 

  9. A. H. Clark, F. Franks, M. D. Pedley, and D. S. Reid,J. Chem. Soc. Faraday Trans. 1 73, 290 (1977).

    Google Scholar 

  10. A. Ben-Naim, J. Wilf, and M. Yaacobi,J. Phys. Chem. 77, 95 (1973).

    Google Scholar 

  11. T. J. Morrison and F. Billett,J. Chem. Soc., 3819 (1952).

  12. D. N. Glew,J. Phys. Chem. 66, 605 (1962).

    Google Scholar 

  13. S. Swaminathan, S. W. Harrison, and D. L. Beveridge,J. Am. Chem. Soc. 100, 5705 (1978).

    Google Scholar 

  14. S. Marcelja, D. J. Mitchell, B. W. Ninham, and M. J. Sculley,J. Chem. Soc. Faraday Trans. 2 73, 630 (1977).

    Google Scholar 

  15. A. Geiger, A. Rahman, and F. H. Stillinger,J. Chem. Phys. 70, 263 (1979).

    Google Scholar 

  16. C. Pangali, M. Rao, and B. J. Berne inComputer Simulations, P. Lykos ed. (American Chemical Society, Anaheim, 1978).

    Google Scholar 

  17. C. Pangali, M. Rao, and B. J. Berne,J. Chem. Phys. 71, 2975 (1979).

    Google Scholar 

  18. M. Rao, C. Pangali, and B. J. Berne,Mol. Phys. 37, 1773 (1979).

    Google Scholar 

  19. V. G. Dashevsky and G. N. Sarikisov,Mol. Phys. 27, 1271 (1974).

    Google Scholar 

  20. A. H. Narten and D. Levy,J. Chem. Phys. 55, 2263 (1971).

    Google Scholar 

  21. C. B. Haselgrove,Math. Comp. 15, 323 (1961).

    Google Scholar 

  22. B. Y. Okamoto, R. H. Wood, and P. T. Thompson,J. Chem. Soc. Faraday Trans. 1 1990 (1978).

  23. R. H. Wood, private communication (1978).

  24. B. M. Ladanyi and D. Chandler,J. Chem. Phys. 62, 4308 (1975).

    Google Scholar 

  25. A. Ben-Naim,J. Chem. Phys. 54, 1387 (1971);54, 3696 (1971);57, 5257 (1972).

    Google Scholar 

  26. D. Chandler and L. R. Pratt,J. Chem. Phys. 65, 2925 (1976).

    Google Scholar 

  27. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratt, L.R., Chandler, D. Hydrophobic interactions and osmotic second virial coefficients for methanol in water. J Solution Chem 9, 1–17 (1980). https://doi.org/10.1007/BF00650133

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650133

Key words

Navigation