Skip to main content
Log in

Excess volume of mixing and equation of state theories

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Equation-of state theories of Flory and of Sanchez and Lacombe describe both enthalpy and volume of mixing of binary systems using single component properties and only one binary parameter X12. We have evaluated this parameter from literature enthalpy data for numerous mixtures of two aromatic hydrocarbons, of alkanes with aromatic compounds, and of alkanes with carbonyl compounds. We have used this X12 for calculation of excess volumes and compared the results with our previously measured experimental data. The agreement was fair for mixtures of two nonpolar components. Nevertheless, mixtures containing either cyclohexane or benzene displayed anomalies that could be traced to special packing of molecules in these compounds when pure. For mixtures of carbonyl compounds with alkanes, the theories predicted the qualitative trends correctly, but the quantitative agreement was rather poor. These results tend to support a model in which the enthalpy(cohesive energy) is inversely proportional to volume (as in the theories considered) only for dispersive interaction. When polar-polar interactions are involved, the dependence of excess volume on the excess enthalpy is much weaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Munk, P. Hattam, and Q. Du,J. Appl. Polym. Sci. Appl. Polym. Symp. 43, 373 (1989).

    Google Scholar 

  2. W. Cheng, A.-A. A. Abdel-Azim, M. J. El-Hibri, Q. Du, and P. Munk,J. Phys. Chem. 93, 8248 (1989).

    Google Scholar 

  3. A. Qin, D. E. Hoffman, and P. Munk,J. Chem. Eng. Data 37, 55 (1992).

    Google Scholar 

  4. A. Qin, D. E. Hoffman, and P. Munk,J. Chem. Eng. Data 37, 62 (1992).

    Google Scholar 

  5. A. Qin, D. E. Hoffman, and P. Munk,J. Chem. Eng. Data 37, 66 (1992).

    Google Scholar 

  6. P. J. Flory,Disc. Faraday Soc. 49, 7 (1970).

    Google Scholar 

  7. D. Pattterson and G. Delmas,Disc. Faraday Soc. 49, 98 (1970).

    Google Scholar 

  8. I. C. Sanchez and R. H. Lacombe,J. Phys. Chem. 80, 2352 (1976).

    Google Scholar 

  9. R. H. Lacombe and I. C. Sanchez,J. Phys. Chem. 80, 2568 (1976).

    Google Scholar 

  10. U. Cabrerizo, R. G. Rubio, C. Menduina, and J. A. R. Renuncio,J. Phys. Chem. 90, 889 (1986)

    Google Scholar 

  11. P. J. Flory,J. Am. Chem. Soc. 87, 1833 (1965).

    Google Scholar 

  12. H. T. Van and D. Patterson,J. Solution Chem. 11, 793 (1982).

    Google Scholar 

  13. M. Costas and B. C. Sanctuary,J. Phys. Chem. 85, 3153 (1981).

    Google Scholar 

  14. M. Costas and D. Patterson,J. Solution Chem. 11, 807 (1982).

    Google Scholar 

  15. R. F. Brunel and K. Van Bibber, inInternational Critical Tables, Vol. III, E. W. Washburn, ed., (McGraw-Hill, New York and London, 1928).

    Google Scholar 

  16. G. Tardajos, E. Aicart, M. Costas, and D. Patterson,J. Chem. Faraday Trans. I 82, 2977 (1986).

    Google Scholar 

  17. A. J. Treszczanowicz and G. C. Benson,Fluid Phase Equilibria. 23, 117 (1985).

    Google Scholar 

  18. T. M. Letcher and R. C. Baxter,J. Solution Chem. 18, 65 (1989).

    Google Scholar 

  19. A. Abe and P. J. Flory,J. Am. Chem. Soc. 87, 1838 (1965).

    Google Scholar 

  20. A. D. Matilla, E. Aicart, M. Diaz Peña, and G. Tardajos,J. Solution Chem. 18, 143 (1989).

    Google Scholar 

  21. B. D. Smith and R. Srivastava,Thermodynamic Data for Pure Compounds, A, Hydrocarbons and Ketones (Elsevier, New York, 1986).

    Google Scholar 

  22. R. C. Weast, ed.,CRC Handbook of Chemistry and Physics, 56th edn.,(CRC Press, 1975–76).

  23. A. W. Francis,Chem. Eng. Sci. 10, 37 (1959).

    Google Scholar 

  24. G. Allen, G. Gee, and G. Wilson,Polymer 1, 456 (1960).

    Google Scholar 

  25. A.-A. A. Abdel-Azim and P. Munk,J. Phys. Chem. 91, 3910 (1987).

    Google Scholar 

  26. A. Weissberger, E. S. Proskauer, J. A. Riddick, and E. E. Toops, Jr,Organic Solvents. Physical Properties and Methods of Purification (Interscience, New York, 1955).

    Google Scholar 

  27. J.-P. E. Grolier, D. Ballet, and A. Viallard,J. Chem. Thermodyn. 6, 895 (1974).

    Google Scholar 

  28. P. Munk, P. Hattam, A. Abdel-Azim, and Q. Du,J. Appl. Polym. Sci. Appl. Polym. Symp. 48, 293 (1991).

    Google Scholar 

  29. J. Timmermans,Physico-Chemical Constants of Pure Organic Compounds, Vols. I and II (Elsevier, New York, 1950 and 1965).

    Google Scholar 

  30. J. J. Christensen, R. W. Hanks, and R. M. Izatt,Handbook of Heats of Mixing (Wiley, New York, 1982).

    Google Scholar 

  31. R. B. Grigg, J. R. Goates, J. B. Ott, and D. L. Thomas,J. Chem. Thermodyn. 14, 27 (1982).

    Google Scholar 

  32. C. Clement,J. Chim. Phys. 75, 745 (1978).

    Google Scholar 

  33. M.-E. Saint-Victor, A. J. Treszczanowicz, and D. Patterson,Fluid Phase Equilibria 46, 295 (1989).

    Google Scholar 

  34. A. Heintz,Ber. Bunsenges. Phys. Chem. 89, 172 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouchlý, J., Qin, A. & Munk, P. Excess volume of mixing and equation of state theories. J Solution Chem 22, 399–425 (1993). https://doi.org/10.1007/BF00647679

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647679

Key words

Navigation