Skip to main content
Log in

Thermodynamics of aqueous gallium chloride. Apparent molar volumes and heat capacities at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Apparent molar volumes and heat capacities of aqueous GaCl3 have been measured at 25°C in binary GaCl3 solutions up to 3 mol-kg−1, and in ternary GaCl3-HCl solutions, containing 0.1345 mol-kg−1 HCl to suppress hydrolysis, up to a concentration of 1 mol-kg−1 GaCl3. Using the Pitzer interaction model for the excess properties, and using ridge regression for the derivation of physically meaningful regression parameters, the measurements yield the following results for the standard molar properties and Pitzer parameters at 25°C: V0(GaCl3)=12.85 cm3-mol−1 v0 (GaCl3)=1.10×10−4 kg-mol−1−J−1−cm−3; β 1v (GaCl3)=2.12×10−3 kg−mol−1−J−1−cm3; Cv(GaCl3)=1.34×10−5 kg2−J−1−cm3; Vo(GaOHCl2)=13.84 cm3−mol−1; C po (GaCl3)=−480.8 J−K−1−mol−1; β 0J (GaCl3)=−8.02×10−6 kg−mol−1−K−2; β 1J (GaCl3)=0.73×10−4 kg−mol−1−K−2; CJ(GaCl3)=−2.52×10−6 kg2-mol−2-K−2; C 0p (GaOHCl2)=20.4 J-K−1-mol−1. The latter parameter has only mathematical significance, its physical meaning is unclear. Comparison of the present experimental results for the standard molar properties of Ga3+ with semi-empirical correlations casts doubt upon the general validity of these correlation methods for trivalent cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Rösler and H. Lange,Geochemical Tables (Elsevier, Amsterdam, 1972).

    Google Scholar 

  2. S. Ostap,Proc. of the 1984 Bauxite Symposium (Los Angeles, 1984).

  3. V. A. Kopeykin,Geochem. Int. 14, 16 (1984).

    Google Scholar 

  4. J. Helgorsky and A. Leveque, French patent F 7424263 (1974).

  5. K. A. Kraus and F. Nelson, inThe Structure of Electrolyte Solutions (Wiley, New York, 1959).

    Google Scholar 

  6. M. H. Mihailov,J. Inorg. Nucl. Chem. 36, 107 (1974).

    Google Scholar 

  7. E. Högfeldt, IUPAC Chemical Data Series, No 21 (Pergamon Press, Oxford, 1982).

    Google Scholar 

  8. Y. Marcus and D. Coryell,Bull. Res. Counc. of Israel A8, 1 (1959).

    Google Scholar 

  9. Y. Marcus,Bull. Res. Counc. of Israel A8, 17 (1959).

    Google Scholar 

  10. Y. Marcus,J. Phys. Chem. 63, 1000 (1959).

    Google Scholar 

  11. D. D. Wagmanet al., J. Phys. Chem. Ref. Data 11 Suppl. 2 (1982).

  12. M. W. Chase, Jr.et al., J. Phys. Chem Ref. Data 14 Suppl. 1 (1985).

  13. K. A. Kraus and R. J. Raridon,J. Am. Chem. Soc. 82, 3271 (1960).

    Google Scholar 

  14. A. M. Shiller,Geochim. Cosmochim. Acta 52, 1879, (1988).

    Google Scholar 

  15. K. J. Orians and K. W. Bruland,Geochim. Cosmochim. Acta 52, 2955 (1988).

    Google Scholar 

  16. J. D. Burton and F. Culkin, inHandbook of Geochemistry II-3, (Springer Verlag, Berlin, 1972).

    Google Scholar 

  17. N. I. Volkova, A. N. Bazarova, D. N. Pachadzhanov, and V. I. Vaynberg,Geochem. Int. 16, 147 (1986).

    Google Scholar 

  18. L. F. Silvester and K. S. Pitzer,J. Phys. Chem. 81, 1822 (1977).

    Google Scholar 

  19. K. S. Pitzer, inActivity Coefficients in Electrolyte Solutions Vol. 1 (CRC Press, Boca Raton, 1979).

    Google Scholar 

  20. K. S. Pitzer, J. C. Peiper, and R. H. Busey,J. Phys. Chem. Ref. Data 13, 1 (1984).

    Google Scholar 

  21. N. M. de Rooij,Mathematical Simulation of Biochemical Processes in Natural Waters by the Model CHARON (Delft Hydraulics, The Netherlands, 1987);

    Google Scholar 

  22. N. M. de Rooij,CHARON Manual (Delft Hydraulics, The Netherlands, 1988).

    Google Scholar 

  23. J.-L. Fortier, P.-A. Leduc, and J. E. Desnoyers,J. Solution Chem. 3, 323 (1974).

    Google Scholar 

  24. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  25. G. S. Kell, inWater—A Comprehensive Treatise, Vol. I (Plenum Press, New York, 1972).

    Google Scholar 

  26. H. C. Zegers, Thesis, Vrije Universiteit, Amsterdam, 1988.

  27. G. Perron, J.-L. Fortier, and J. E. Desnoyers,J. Chem. Thermodyn. 7, 1177 (1975).

    Google Scholar 

  28. L. Barta and L. G. Hepler,Can. J. Chem. 64, 353 (1986).

    Google Scholar 

  29. G. Akerlöf and J. Teare,J. Am. Chem. Soc. 60, 1226 (1938).

    Google Scholar 

  30. P. Picker, P. A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  31. H. C. Zegers, R. Boegschoten, W. Mels, and G. Somsen,Can. J. Chem. 64, 40 (1986).

    Google Scholar 

  32. P. R. Tremaine, K. Sway, and J. A. Barbero,J. Solution Chem. 15, 1 (1986).

    Google Scholar 

  33. D. J. Bradley and K. S. Pitzer,J. Phys. Chem. 83, 1599 (1979).

    Google Scholar 

  34. J. Ananthaswamy and G. Atkinson,J. Chem. Eng. Data 29, 81 (1984).

    Google Scholar 

  35. N. R. Draper and H. Smith,Applied Regression Analysis, 2nd edn., (Wiley Interscience, 1981).

  36. S. A. Wood and D. A. Crerar,Geochim. Cosmochim. Acta 49, 165 (1985).

    Google Scholar 

  37. P. F. M. van Gaans,J. Solution Chem. (submitted).

  38. P. F. M. van Gaans and S. P. Vriend,Comp. Geosc. (in press).

  39. K. S. Pitzer, R. N. Roy, and L. F. Silvester,J. Am. Chem. Soc. 99, 4930 (1977).

    Google Scholar 

  40. K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  41. T. W. Swaddle and M. K. S. Mak,Can. J. Chem. 61, 473 (1983).

    Google Scholar 

  42. C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 86, 5385 (1964).

    Google Scholar 

  43. C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 86, 5390 (1964).

    Google Scholar 

  44. E. L. Shock and H. C. Helgeson,Geochim. Cosmochim. Acta 52, 2009 (1988).

    Google Scholar 

  45. E. L. Shock, personal communication.

  46. G. K. Schweitzer and J. F. Stephens,Spectrosc. Lett. 3, 11 (1970).

    Google Scholar 

  47. S. F. Lincoln, A. C. Sanderock, and D. R. Stranks,J. Chem. Soc. Dalton Trans. 669 (1975).

  48. R. D. Shannon,Acta Cryst. A32, 751 (1976).

    Google Scholar 

  49. A. L. Horvath,Handbook of Aqueous Electrolyte Solutions. Physical Properties, Estimation and Correlation Methods (Ellis Horwood, Chichester, 1985).

    Google Scholar 

  50. J. K. Hovey and P. R. Tremaine,Geochim. Cosmochim. Acta 50 453 (1986).

    Google Scholar 

  51. K. S. Pitzer, J. R. Peterson, and L. F. Silvester,J. Solution Chem. 7, 45 (1978).

    Google Scholar 

  52. J. C. Peiper and K. S. Pitzer,J. Chem. Thermodyn. 14 613 (1982).

    Google Scholar 

  53. P. F. M. van Gaans and J. C. van Miltenburg,J. Solution Chem. (submitted).

  54. P. L. Brown,J. Chem. Soc. Dalton Trans. 399 (1989).

  55. P. F. M. van Gaans,Comp. Geosc. 15, 843 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Gaans, P.F.M., Oonk, H.A.J. & Somsen, G. Thermodynamics of aqueous gallium chloride. Apparent molar volumes and heat capacities at 25°C. J Solution Chem 19, 831–854 (1990). https://doi.org/10.1007/BF00647106

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647106

Key words

Navigation