Skip to main content
Log in

High pressure raman study of isotropic lineshapes of aqueous sodium nitrate solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The isotropic lineshape of the v1 (A1) stretching mode of the nitrate ion in solutions of sodium nitrate has been studied at 25°C as a function of NaNO3 concentration ranging from 0.1 to 6M. The pressure dependence has been determined for 1 and 6M solutions at pressures ranging from 1 bar to 3 kbar. The isotropic band becomes more asymmetric with increasing concentration, and its v1 peak frequency undergoes a blue shift both with increased concentration and increased pressure. At low concentration the vibrational correlation function is well described by the Kubo formula, whereas at higher concentration it becomes more Gaussian. The experimental data indicate that the v1 vibrational lineshape in aqueous solutions of NaNO3 is dominated by strong intermolecular interactions which produce inhomogeneous broadening at higher concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. Zerda, S. Perry, and J. Jonas,J. Chem. Phys. 76, 5774 (1982).

    Google Scholar 

  2. T. W. Zerda, S. Perry, and J. Jonas,Chem. Phys. Lett. 83, 600 (1981).

    Google Scholar 

  3. T. Kato, J. Umemura, and T. Takenaka,Mol. Phys. 36, 621 (1978).

    Google Scholar 

  4. T. Kato and T. Takenaka,Chem. Phys. Lett. 62, 77 (1979).

    Google Scholar 

  5. T. Kato,Mol. Phys. 39, 559 (1980).

    Google Scholar 

  6. M. Koubaa and M. Perrot,C. R. Acad. Sci., Paris 286, 99 (1978).

    Google Scholar 

  7. W. G. Rothschild, M. Perrot, and F. Guillaume,Raman Spectroscopy Linear and Nonlinear, J. Lascombe and P. V. Huong, eds., (Wiley, New York, 1982).

    Google Scholar 

  8. M. Perrot, F. Guillaume, and W. G. Rothschild,J. Phys. Chem. 87, 5193 (1983).

    Google Scholar 

  9. D. James and R. L. Frost,Faraday Disc. Chem. Soc. 64, 48 (1977).

    Google Scholar 

  10. R. L. Frost, R. Appleby, M. T. Carrick, and D. W. James,Can. J. Spectrosc. 27, 82 (1982).

    Google Scholar 

  11. R. L. Frost and D. W. James,J. Chem. Soc. Faraday Trans. I 78, 325, (1982).

    Google Scholar 

  12. R. L. Frost and D. W. James,J. Chem. Soc. Faraday Trans. I 78, 3249 (1982).

    Google Scholar 

  13. Francois Guillaume, M. Perrot, and W. G. Rothschild,J. Chem. Phys. 83, 4338 (1985).

    Google Scholar 

  14. T. Noguchi, A. Tanaka, K. Suzuki, and Y. Taniguchi,Physics 139, 508 (1986).

    Google Scholar 

  15. R. Kubo inFluctuations, Relaxations, and Resonance in Magnetic Systems, D. Ter Haar, ed., (Plenum, New York, 1962), pp. 23–40.

    Google Scholar 

  16. W. G. Rothschild,J. Chem. Phys. 65, 455 (1976).

    Google Scholar 

  17. J. Schroeder, V. H. Schiemann, P. T. Sharko, and J. Jonas,J. Chem. Phys. 66, 3215 (1977).

    Google Scholar 

  18. S. Perry, T. W. Zerda, and J. Jonas,J. Chem. Phys. 75, 4214 (1981).

    Google Scholar 

  19. S. Perry, Ph.D Thesis, University of Illinois, Urbana, Illinois, 1981.

  20. J. Akai, Ph.D. Thesis, University of Illionois, Urbana, Illinois, 1977.

  21. S. Perry, P. T. Sharko, and J. Jonas,App. Spectros. 37, 340 (1983).

    Google Scholar 

  22. F. G. Dijkman and J. H. van der Maas,J. Chem. Phys. 66, 3871 (1977).

    Google Scholar 

  23. F. G. Dijkman,Mol. Phys. 36, 705 (1978).

    Google Scholar 

  24. D. W. Oxtoby,J. Chem. Phys. 74, 5371 (1981).

    Google Scholar 

  25. T. Kato,Mol. Phys. 48, 1119 (1982).

    Google Scholar 

  26. T. Kato,J. Chem. Phys. 79, 2139 (1983).

    Google Scholar 

  27. S. Bratos, J. Rios, and Y. Guissani,J. Chem. Phys. 52, 439 (1970).

    Google Scholar 

  28. S. Bratos and E. Marechal,Phys. Rev. A4, 1591 (1971).

    Google Scholar 

  29. S. Bratos and G. Tarjus,Phys. Rev. A24, 1591 (1981).

    Google Scholar 

  30. J. Lascombe and M. Perrot,Faraday Disc. Chem. Soc. 66, 216 (1979).

    Google Scholar 

  31. A. M. Benson, Jr. and H. G. Drickmer,J. Chem. Phys. 28, 1164 (1957).

    Google Scholar 

  32. R. R. Wiederkehr and H. G. Drickamer,J. Chem. Phys. 28, 311 (1957).

    Google Scholar 

  33. P. R. Monson, Jr., H. L. Chen, and G. E. Weing,J. Mol Spect. 25, 501 (1968).

    Google Scholar 

  34. V. LeDuff,J. Chem. Phys. 59, 1984 (1973).

    Google Scholar 

  35. W. Schindler and J. Jonas,J. Chem. Phys. 72, 5019 (1980).

    Google Scholar 

  36. W. Schindler, P. T. Sharko, and J. Jonas,J. Chem. Phys. 76, 3493 (1982).

    Google Scholar 

  37. J. Jonas, T. DeFries, and D. J. Wilbur,J. Chem. Phys. 65, 582 (1976).

    Google Scholar 

  38. D. E. Irish and A. R. Davis,Can. J. Chem. 46, 943 (1968).

    Google Scholar 

  39. G. Fini and P. Marone,J. Chem. Soc. Faraday Trans. II 70, 1776 (1974).

    Google Scholar 

  40. G. Fini and P. Marone,Spectrochim. Acta Part A 32, 625 (1976).

    Google Scholar 

  41. C. H. Wang and J. McHale,J. Chem. Phys. 72, 4039 (1980).

    Google Scholar 

  42. R. L. Frost, D. W. James, R. Appleby, and R. E. Mayes,J. Phys. Chem. 86, 3840 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, K., Jonas, J. High pressure raman study of isotropic lineshapes of aqueous sodium nitrate solutions. J Solution Chem 16, 55–69 (1987). https://doi.org/10.1007/BF00647015

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647015

Key Words

Navigation