Skip to main content
Log in

Thermodynamics of Tetra-n-octyltin+ hydrocarbon systems by gas-liquid chromatography

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The activity coefficients of fifteen hydrocarbons at infinite dilution in tetra-n-octyltin were measured using gas-liquid chromatography at five temperatures between 40 and 60°C. Partial molar excess thermodynamic properties are calculated from the experimental results, and discussed within the framework of the equation of state theory of Flory and of the Ising fluid theory of Sanchez and Lacombe. Both theories results in binary mixture characteristic parameters (X12 and ΔP*, respectively) that decrease linearly with the temperature. The results may be interpreted by assuming that there is orientational order in pure tetra-n-octyltin and in pure n-alkanes, but not in the remaining solutes; the destruction of this order on mixing the hydrocarbons with the tin compound results in important contributions to the excess thermodynamic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Flory,J. Chem. Phys. 12, 425 (1944).

    Google Scholar 

  2. E. A. Guggenheim,Mixtures (Oxford University Press, London, 1952), Chaps. 10–12.

    Google Scholar 

  3. I. Prigogine, V. Mathot, and A. Bellemans,The Molecular Theory of Solutions (North Holland, Amsterdam, 1957), Chaps. 16 and 17.

    Google Scholar 

  4. P. J. Flory, R. A. Orwoll, and A. Vrij,J. Am. Chem. Soc. 86, 3507, 3515 (1964);

    Google Scholar 

  5. P. J. Flory,ibid87, 1833 (1965).

    Google Scholar 

  6. A. Abe and P. J. Flory,ibid87, 1838 (1965);

    Google Scholar 

  7. R. A. Orwoll and P. J. Flory,ibid89, 6814, 6822 (1967);

    Google Scholar 

  8. B. E. Eichinger and P. J. Flory,Trans. Faraday Soc. 64, 2035 (1968).

    Google Scholar 

  9. I. Sanchez and R. H. Lacombe,J. Phys. Chem. 80, 2352 (1978);

    Google Scholar 

  10. R. H. Lacombe and I. Sanchez,ibid80, 2568 (1978);

    Google Scholar 

  11. I. Sanchez and R. H. Lacombe,Macromolecules 11, 1145 (1978).

    Google Scholar 

  12. P. Bothorel, C. Clement, and P. Maraval,Compt. Rend. 264, 658 (1967).

    Google Scholar 

  13. V. T. Lam, P. Picker, D. Patterson, and P. Tancréde,J. Chem. Soc. Faraday Trans. II 70, 1465 (1974);

    Google Scholar 

  14. P. Tancréde, P. Bothorel, P. de Saint-Romain, and D. Patterson,ibid73, 15 (1977)

    Google Scholar 

  15. P. Tancréde, D. Patterson, and P. Bothorel,ibid73, 29 (1977)

    Google Scholar 

  16. M. Barbe and D. Patterson,J. Phys. Chem. 82, 40, (1978)

    Google Scholar 

  17. M. Barbe and D. Patterson,J. Solution Chem. 9, 753 (1980).

    Google Scholar 

  18. G. Delmas and S. Turrel,J. Chem. Soc. Faraday Trans. I 70, 572 (1974)

    Google Scholar 

  19. G. Delmas, N. T. Thanh,ibid71, 1172 (1975)

    Google Scholar 

  20. R. Philippe, G. Delmas, and H. Phuong-Nguyen,Can. J. Chem. 57, 517 (1979)

    Google Scholar 

  21. H. Phuong-Nguyen, B. Riedl and G. Delmas,ibid61, 1885 (1983)

    Google Scholar 

  22. H. Phuong-Nguyen and G. Delmas,ibid64, 681 (1986).

    Google Scholar 

  23. G. Delmas, P. de Saint-Romain, and P. Purves,J. Chem. Soc. Faraday Trans. I 71, 1181 (1975).

    Google Scholar 

  24. G. Delmas, P. Purves, and P. de Saint-RomainJ. Phys. Chem. 79, 1970 (1975).

    Google Scholar 

  25. G. Delmas and N. T. Thanh,J. Phys. Chem. 81, 1730 (1977).

    Google Scholar 

  26. R. Philippe, G. Delmas, and M. Mouchon,Can. J. Chem. 56, 370 (1978).

    Google Scholar 

  27. C. F. Chien and R. J. Laub,Bull. Soc. Chim. Beograd 48, 319 (1983).

    Google Scholar 

  28. W. J. Jones, D. P. Evans, T. Gulwell, and D. C. Griffiths,J. Chem. Soc. 39 (1935).

  29. W. P. Neumann,Justus Leibigs Ann. Chem. 653, 157 (1962).

    Google Scholar 

  30. Annual Book of ASTM Standards, Vol. 03.05, Sec. 3, (American Society for Testing and Materials, Philadelphia, 1985), p. 173.

  31. J. R. Conder and C. L. Young,Physicochemical Measurements by Gas Chromatography (Wiley, New York, 1979).

    Google Scholar 

  32. R. R. Dreisbach,Adv. Chem. Ser. 22, (1959);29 (1961).

  33. M. L. McGlashan and J. B. Potter,Proc. Roy. Soc. A 267, 478 (1962).

    Google Scholar 

  34. A. P. Kudchadker, G. H. Alani, and B. J. ZwolinskiChem. Rev. 68, 659 (1968).

    Google Scholar 

  35. E. C. Clarke and D. N. Glew,Trans. Faraday Soc 62, 539 (1966).

    Google Scholar 

  36. J. M. Bardin and D. Patterson,Polymer 10, 247 (1969).

    Google Scholar 

  37. G. Allen, G. Gee, and G. Wilson,Polymer 1, 456 (1960).

    Google Scholar 

  38. P. Tancréde and G. Delmas,European Polymer J. 9, 199 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castells, R.C., Castells, C.B. Thermodynamics of Tetra-n-octyltin+ hydrocarbon systems by gas-liquid chromatography. J Solution Chem 21, 129–146 (1992). https://doi.org/10.1007/BF00647003

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647003

Key Words

Navigation