Skip to main content
Log in

A neutron inelastic scattering investigation of the diffusion kinetics of H2O molecules and hydration complexes in concentrated ionic solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Intermolecular frequencies of H2O's and the diffusion kinetics have been investigated by neutron inelastic scattering for concentrated ionic solutions containing small and/or multiply charged cations (e.g., Cr+3, Mg+2, Ca+2, and Li+1). As higher concentrations are approached such that the majority of H2O's are in hydration layers, their exchange time can exceed the neutron interaction time. Then the diffusion kinetics depart functionally from activated reorientations of individual H2O's characteristic of lower concentrations and evolve to continuous diffusion processes of hydration complexes characterized by small self-diffusion coefficients. The general features of the observed evolution in the functionality of the diffusion kinetics are found to be functionally consistent with an approximate model which includes contributions from the delayed diffusional exchange of individual H2O's as well as the continuous diffusion of hydrated ions. At a given concentration, the temperature interval over which this evolution in functionality occurs increases both with increasing strength of the primary cation-H2O coordination and with anion basicity. Further, as the temperature decreases, frequencies of defined cation-water hydration complexes gradually sharpen in a continuous manner, showing no abrupt variations at glass transitions. Anions of increasing basicity decrease the self-diffusion coefficients of the ion-water complexes and perturbed frequencies characteristic of cation-water hydration complexes. Such anion effects, at high concentrations, correspond to an increasing degree of time-average indirect or direct ion pairing with increasing anion basicity. This results, in turn, both in a distortion or partial disruption of the cation hydration sheaths and in a degree of coupling and/or “bridging” between anions and hydrated cations so as to increase the effective masses and friction coefficients associated with their diffusional motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Leung, S. M. Sanborn, and G. J. Safford,J. Phys. Chem. 74, 3710 (1970).

    Google Scholar 

  2. G. J. Safford, P. S. Leung, A. W. Naumann, and P. C. Schaffer,J. Chem. Phys. 50, 4444 (1969).

    Google Scholar 

  3. P. S. Leung and G. J. Safford,J. Phys. Chem. 74, 3696 (1970).

    Google Scholar 

  4. G. J. Safford and P. S. Leung,Ber. Deut. Bunsenges. Physik. Chem. 75, 366 (1971).

    Google Scholar 

  5. C. A. Angell and E. J. Sare,J. Chem. Phys. 52, 1058 (1970).

    Google Scholar 

  6. K. E. Larsson and L. Bergstedt,Phys. Rev. 151, 117 (1966).

    Google Scholar 

  7. P. G. Manning,Can. J. Chem. 43, 3476 (1965).

    Google Scholar 

  8. D. E. Woessner, B. S. Snowden, Jr., and A. G. Ostroff,J. Chem. Phys. 49, 371 (1968).

    Google Scholar 

  9. D. E. Woessner, B. S. Snowden, Jr., and A. G. Ostroff,J. Chem. Phys. 50, 4714 (1969).

    Google Scholar 

  10. M. V. Olson, Y. Kanazawa, and H. Taube,J. Chem. Phys. 51, 289 (1969).

    Google Scholar 

  11. J. Reuben and D. Fiat,J. Chem. Phys. 51, 4909 (1969).

    Google Scholar 

  12. J. Reuben and D. Fiat,J. Chem. Phys. 51, 4918 (1969).

    Google Scholar 

  13. R. G. Bryant,J. Phys. Chem. 73, 1153 (1969).

    Google Scholar 

  14. T. H. Cannon and R. E. Richards,Trans. Faraday Soc. 62, 1378 (1966).

    Google Scholar 

  15. A. Weiss and K. H. Nothnagel,Ber. Bunsenges. Physik. Chem. 75, 216 (1971).

    Google Scholar 

  16. J. Reuben and D. Fiat,Chem. Commun., 729 (1967).

  17. J. Reuben and D. Fiat,J. Chem. Phys. 47, 5440 (1967).

    Google Scholar 

  18. T. J. Swift and R. E. Connick,J. Chem. Phys. 37, 307 (1962).

    Google Scholar 

  19. D. L. Nelson and D. E. Irish,J. Chem. Phys. 54, 4479 (1971).

    Google Scholar 

  20. R. E. Hester and W. E. L. Grossman,Spectrochim. Acta 23A, 1945 (1967).

    Google Scholar 

  21. A. Fratiello, R. E. Lee, V. N. Nishida, and R. E. Schuster,J. Chem. Phys. 48, 3705 (1968).

    Google Scholar 

  22. H. G. Hertz,Ber. Bunsenges. Physik. Chem. 75, 183 (1971).

    Google Scholar 

  23. D. E. O'Reilly and E. M. Peterson,J. Chem. Phys. 51, 4906 (1969).

    Google Scholar 

  24. N. A. Matwiyoff and H. Taube,J. Am. Chem. Soc. 90, 2796 (1968).

    Google Scholar 

  25. C. T. Moynihan and A. Fratiello,J. Am. Chem. Soc. 89, 5546 (1967).

    Google Scholar 

  26. J. A. Jackson, J. F. Lemons, and H. Taube,J. Chem. Phys. 32, 553 (1960).

    Google Scholar 

  27. J. P. Hunt and H. Taube,J. Chem. Phys. 19, 602 (1951).

    Google Scholar 

  28. M. Alei, Jr., and J. A. Jackson,J. Chem. Phys. 41, 3402 (1964).

    Google Scholar 

  29. G. J. Safford, P. C. Schaffer, P. S. Leung, G. F. Doebbler, G. W. Brady, and E. F. X. Lyden,J. Chem. Phys. 50, 2140 (1969).

    Google Scholar 

  30. See, for example,Thermal Neutron Scattering, P. A. Egelstaff, ed. (Academic Press Inc., New York, 1965).

    Google Scholar 

  31. B. N. Brockhouse,Nuovo Cimento Suppl. 9, 45 (1958).

    Google Scholar 

  32. A. N. Goland and K. Otnes,Phys. Rev. 153, 184 (1967).

    Google Scholar 

  33. Yu. M. Kessler, Yu. M. Povarov, and A. I. Gorbanev,Zh. Strukt. Khim. 3, 82 (1962).

    Google Scholar 

  34. L. A. Blatz and P. Waldstein,J. Phys. Chem. 72, 2614 (1968).

    Google Scholar 

  35. J. D. Worley and I. M. Klotz,J. Chem. Phys. 45, 2868 (1966).

    Google Scholar 

  36. D. W. McCall and D. C. Douglass,J. Phys. Chem. 69, 2001 (1965).

    Google Scholar 

  37. R. A. Plane and H. Taube,J. Phys. Chem. 56, 33 (1952).

    Google Scholar 

  38. K. A. Hartman, Jr.,J. Phys. Chem. 70, 270 (1966).

    Google Scholar 

  39. R. M. Diamond,J. Am. Chem. Soc. 80, 4808 (1958).

    Google Scholar 

  40. R. E. Connick and K. Wüthrich,J. Chem. Phys. 51, 4506 (1969).

    Google Scholar 

  41. K. Giese, U. Kaatze, and R. Pottel,J. Phys. Chem. 74, 3718 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, P.S., Safford, G.J. A neutron inelastic scattering investigation of the diffusion kinetics of H2O molecules and hydration complexes in concentrated ionic solutions. J Solution Chem 2, 525–546 (1973). https://doi.org/10.1007/BF00644879

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00644879

Key words

Navigation