Skip to main content
Log in

Virial expansions in problems of effective characteristics. 1. General concepts

  • Published:
Mechanics of Composite Materials Aims and scope

Conclusion

The (virial) power series of the concentration of inhomogeneities (particles) obtained in principle solve the problem of calculating the effective characteristics. The proposed form of the virial expansions does not contain integrals requiring regularization. This was attained by considering virial expansions in finite bodies, where it can be shown that the principal parts of the integrals which give convergence in passing to an infinite body are equal to zero due to the equilibrium equations in summation of the effect of all surrounding particles on the isolated particle.

From a practical point of view, calculation of then-th term of the expansion requires solving the problem ofn inhomogeneities, which restricts the applicability of the method. However, the virial series are convenient for analysis of simpler approximate methods such as self-consistent methods, for example. The next communication will treat such an analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. D. Shermergor, Theory of Elasticity of Microinhomogeneous Media [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  2. R. M. Christensen, Introduction to the Mechanics of Composites [Russian translation], Mir, Moscow (1982).

    Google Scholar 

  3. I. M. Lifshits and L. N. Rozentsveig, “Theory of elastic properties of polycrystals,” Zh. Éksp. Teor. Fiz.,16, No. 11, 967–980 (1946).

    Google Scholar 

  4. I. M. Lifshits and L. N. Rozentsveig, “Theory of elastic properties of polycrystals,” Zh. Éksp. Teor. Fiz.,21, No. 10, 1184 (1951).

    Google Scholar 

  5. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  6. J. Eshelby, Continual Theory of Dislocations [Russian translation], Izd. Inostr. Lit., Moscow (1963).

    Google Scholar 

  7. A. D. Buckingham and J. A. Pople, “The dielectric constant of an imperfect nonpolar gas,” Trans. Faraday Soc.,51, Part 8, 1029–1035 (1955).

    Google Scholar 

  8. V. Brown, Dielectrics [Russian translation], Izd. Inostr. Lit., Moscow (1961).

    Google Scholar 

  9. V. M. Finkel'berg, “Virial expansion in the problem of electrostatic polarization of a many-bodied system,” Dokl. Akad. Nauk,152, No. 2, 320–323 (1963).

    Google Scholar 

  10. V. M. Finkel'berg, “Dielectric constant of mixtures,” Zh. Tekh. Fiz.,34, No. 3, 509–518 (1964).

    Google Scholar 

  11. G. K. Batchelor and J. T. Green, “The determination of the bulk stress in a suspension of spherical particles to orderc 2,” J. Fluid Mech.,56, Part 3, 401–427 (1972).

    Google Scholar 

  12. G. K. Batchelor, “Transport properties of two-phase materials with random structure,” Ann. Rev. Fluid Mech., Vol. 6, Ann. Rev. Inc., Palo Alto, California (1974), pp. 227–255.

    Google Scholar 

  13. D. J. Jeffrey, “Conduction through a random suspension of spheres,” Proc. Roy. Soc. Ser. A,335, No. 1602, 355–367 (1973).

    Google Scholar 

  14. D. J. Jeffrey, “Group expansion for the bulk properties of a statistically homogeneous, random suspension,” Proc. Roy. Soc. Ser. A,338, No. 1615, 503–516 (1974).

    Google Scholar 

  15. J. R. Willis and J. R. Acton, “The overall elastic moduli of a dilute suspension of spheres,” Quart. J. Mech. Appl. Math.,29, No. 2, 163–177 (1976).

    Google Scholar 

  16. H. S. Chen and A. Acrivos, “The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentration,” Int. J. Solids Struct.,14, No. 5, 349–364 (1978).

    Google Scholar 

  17. A. K. Mal and A. K. Chatterjee, “The elastic moduli of a fiber-reinforced composite,” J. Appl. Mech.,44, No. 3, 61–67 (1977).

    Google Scholar 

  18. A. K. Chatterjee and A. K. Mal, “Elastic moduli of two-component systems,” J. Geophys. Res.,83, No. B4, 1785–1792 (1978).

    Google Scholar 

  19. A. M. Golovin and V. E. Chizhov, “Calculation of the effective thermal conductivity of suspensions,” Prikl. Mat. Mekh.,48, No. 2, 273–281 (1984).

    Google Scholar 

  20. D. A. G. Bruggeman, “Berechnung verschiedener phisikalischer Konstanten von inhomogenen Substanzen,” Ann. Phys.,24, No. 7, 636 (1935).

    Google Scholar 

  21. R. Landauer, “The electrical resistance of binary metallic mixture,” J. Appl. Phys.,23, No. 7, 779–784 (1952).

    Google Scholar 

  22. A. K. Veinberg, “Magnetic permeability, electrical conductivity, dielectric constant, and thermal conductivity of a edium containing spherical and ellipsoidal inclusions,” Dokl. Akad. Nauk,169, No. 3, 543–546 (1966).

    Google Scholar 

  23. A. S. Vavakin and R. L. Salganik, “Effective characteristics of inhomogeneous media with isolated inhomogeneities,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 65–75 (1975).

    Google Scholar 

  24. A. S. Vavakin and R. L. Salganik, “Effective elastic characteristics of bodies with isolated cracks, cavities, and rigid inhomogeneities,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 95–107 (1978).

    Google Scholar 

  25. V. M. Levin, “Determination of the effective elastic moduli of composite materials,” Dokl. Akad. Nauk,220, No. 5, 1042–1045 (1975).

    Google Scholar 

  26. Yu. A. Buevich and Yu. A. Korneev, “Effective thermal conductivity of a dispersion medium with low Peclet numbers,” Inzh. Fiz. Zh.,31, No. 4, 607–612 (1976).

    Google Scholar 

  27. S. K. Kanaun, “Poisson set of cracks in an elastic medium,” Prikl. Mat. Mekh.,44, No. 6, 1129–1139 (1980).

    Google Scholar 

  28. Yu. V. Sokolkin and A. A. Tashkinov, Mechanics of Deformation and Failure of Structurally Inhomogeneous Bodies [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  29. M. I. Shvidler, Statistical Hydrodynamics of Porous Media [in Russian], Nedra, Moscow (1985).

    Google Scholar 

  30. R. W. Zimmerman, “Elastic moduli of a solid with spherical pores: new self-consistent method,” J. Rock. Mech. Min. Sci. Geomech. Abstr.,21, No. 6, 339–343 (1984).

    Google Scholar 

  31. A. V. Dyskin, “Calculation of effective strain characteristics of material with cracks,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 130–135 (1985).

    Google Scholar 

  32. E. Chang, B. S. Yendler, and A. Acrivos, “A model for estimating the effective thermal conductivity of a random suspension of spheres,” Multiphase Flow Rel. Probl., Nos. 2–4, 35–54 (1986).

    Google Scholar 

  33. L. J. Wallpole, “The elastic behavior of a suspension of spherical particles,” Quart. J. Mech. Appl. Math.,25, 153–160 (1971).

    Google Scholar 

  34. B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Izd. Mosk. Un-ta, Moscow (1984).

    Google Scholar 

  35. A. N. Guz', L. P. Khoroshun, G. A. Vanin, et al., Mechanics of Composite Materials and Construction Elements, Vol. 1, Mechanics of Materials [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  36. Yu. F. Kovalenko and R. L. Salganik, “Crack-like inhomogeneities and their effect on the effective mechanical characteristics,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5, 76–86 (1977).

    Google Scholar 

  37. L. D. Landau and E. M. Lifshits, Theory of Elasticity [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  38. K. Teodosiu, Elastic Models of Defects in Crystals [Russian translation], Mir, Moscow (1985).

    Google Scholar 

  39. R. V. Gol'dshtein and A. V. Kaptsov, “Formation of failure structures of weakly interacting cracks,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 173–182 (1982).

    Google Scholar 

  40. L. I. Slepyan, Mechanics of Cracks [in Russian], Sudostroenie, Leningrad (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 30, No. 2, pp. 222–237, March–April, 1994.

We would like to thank the participants in the seminar “Mechanics and Physics of Rocks” (Moscow Mining Institute) and its director R. L. Salganik for their useful discussion of the results of the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germanovich, L.N., Dyskin, A.V. Virial expansions in problems of effective characteristics. 1. General concepts. Mech Compos Mater 30, 157–167 (1994). https://doi.org/10.1007/BF00635848

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00635848

Keywords

Navigation