Skip to main content
Log in

Étude autoradiographique de l'influence de la température sur la prolifération cellulaire chez les embryons âgés dePleurodeles waltlii Michah. (Amphibien, Urodéle)

Autoradiographic study of the effect of temperature on cellular proliferation in late embryos ofPleurodeles waltlii Michah. (Amphibia, Urodela)

  • Published:
Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen Aims and scope Submit manuscript

Summary

We observed in Pleurodeles embryos, stage 34, that the duration of the cell cycle and its phases was approximately the same for every tissue but was easily modified by varying the temperature. The generation time and the duration of S phase in embryos submitted to a 12° C temperature instead of 26° C are tripled or quadrupled. A temperature rise produced a proportionale shortening inG 2 andM phases and a lengthening inG 1 phase. ThisG 1 phase is not detectable at 12° C but represent a 1/4 of the total generation time at 26° C. The more differentiated the cells are, the longer is theG 1 time. The cell population studied during these experiments are growing exponentially. Growth fraction, which represents the exponential growth basis, is temperature independent but has a tissue specificity. This growth fraction is smaller the more the tissue is differentiated. However, the relative rate of cell division, inversely proportional to the generation time, is temperature dependent and appears to control the embryo's relative rate of growth under different temperatures.

Résumé

Chez l'embryon de Pleurodèle au stade 34, la durée du cycle cellulaire et de ses phases varie peu selon les tissus mais dépend étroitement de la température. Le temps de génération et la durée de la phase S sont environ 3 ou 4 fois plus longs à 12° C qu'à 26° C. Lorsque la température s'élève, la phaseG 2 est abrégée dans les mêmes proportions que la phaseM; par contre, la durée de la phaseG 1 qui est nulle à 12° C s'allonge considérablement pour représenter environ 1/4 de la durée totale du cycle cellulaire à 26° C. La durée de cette phase est d'autant plus longue, à une température donnée, que les cellules sont plus différenciées. Les tissus étudiés représentent des populations cellulaires en croissance exponentielle. Le coefficient de prolifération, duquel dépend la base de la fonction exponentielle de croissance, est indépendant de la température mais particulier à chaque tissu. Il est d'autant plus faible que le tissu est plus différencié. En revanche, la vitesse de multiplication des cellules, qui est inversement proportionnelle au temps de génération, varie largement en fonction de la température; en outre, elle semble déterminer à elle seule la vitesse du développement des embryons aux températures choisies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliographie

  • Agrell, I.: The thermal dependence of the mitotic stages during the early development of the sea urchin embryo. Ark. Zool.11, 383–392 (1958).

    Google Scholar 

  • Baserga, R. A.: Mitotic cycle of ascites tumor cells. Arch. Path.75, 156–161 (1963).

    Google Scholar 

  • Brown, R.: The effects of temperature on the different stages of cell division in root tip. J. exp. Bot.2, 96–110 (1951).

    Google Scholar 

  • Brugal, G.: Relations entre la prolifération et la différenciation cellulaires: étude autoradiographique chez les embryons et les jeunes larves dePleurodeles waltlii Michah. (Amphibien, Urodèle). Develop. Biol.24, 301–321 (1971).

    Google Scholar 

  • —, Bertrandias, J. P.: Méthode mathématique d'évaluation du coefficient de prolifération dans les populations cellulaires embryonnaires en croissance exponentielle. C. R. Acad. Sci. (Paris) D,270, 1603–1606 (1970).

    Google Scholar 

  • —, Chibon, P.: Signification des variations périodiques de l'indice de marquage en fonction du temps dans les tissus embryonnaires. C. R. Acad. Sci. (Paris) D,270, 998–1001 (1970).

    Google Scholar 

  • Chibon, P., Brugal, G.: Etude autoradiographique de l'action de la température et de la thyroxine sur la durée des cycles mitotiques dans l'embryon âgé et la jeune larve dePleurodeles waltlii Michah. (Amphibien, Urodèle). C. R. Acad. Sci. (Paris) D,269, 70–73 (1969).

    Google Scholar 

  • Chulitskaya, E. V.: Onset of desynchronization and change in the rhythm of nuclear division in the cleavage period. Dokl. Akad. Nauk SSSR.173, 163–166 (1967).

    Google Scholar 

  • Cleaver, J. E.: Thymidine metabolism and cell kinetics. Frontiers of biology (Neuberger, A., et Tatum E. L., eds.). Amsterdam: North-Holland Publishing Company 1967.

    Google Scholar 

  • Decker, R. S., Kollros, J. J.: The effect of cold on hind-limb growth and lateral motor column development inRana pipiens. J. Embryol. exp. Morphol.21, 219–233 (1969).

    Google Scholar 

  • Defendi, V., Manson, L. A.: Analysis of the life-cycle in mammalian cells. Nature (Lond.)198, 359–361 (1963).

    Google Scholar 

  • Dettlaff, T. A.: Cell division, duration of interkinetic states and differentiation in early stages of embryonic development. In: Advances in morphogenesis (Abercrombie, M., et Brachet, J., eds.), vol. 3, p. 323–362. New York-London: Academic Press 1964.

    Google Scholar 

  • Donnelly, G. M., Sisken, J. E.: RNA and protein synthesis required for entry of cells into mitosis and during the mitotic cycle. Exp. Cell Res.46, 93–105 (1967).

    Google Scholar 

  • Ephrussi, B.: Sur les coefficients de température des différentes phases de la mitose des oeufs d'oursins (Paracentrotus lividus LK.) et del`Ascaris megalocephala. Protoplasma1, 105–123 (1927).

    Google Scholar 

  • Evans, H. J., Savage, J. R. K.: The effect of temperature on mitosis and on the action of colchicine in root meristem cells ofVicia faba. Exp. Cell Res.18, 51–61 (1959).

    Google Scholar 

  • Fauré-Fremiet, E.: L'oeuf deSabellaria alveolata L. Arch. Anat. micr.20, 211 (1924).

    Google Scholar 

  • Gallien, L., Durocher, M.: Table chronologique du développement dePleurodeles waltlii. Bull. Biol. Fr. et Belg.91, 97–114 (1957).

    Google Scholar 

  • Graham, C. F., Morgan, R. W.: Changes in the cell cycle during early Amphibian development. Develop. Biol.14, 439–460 (1966).

    Google Scholar 

  • Howard, A., Pelc, S. R.: Synthesis of desoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity (Suppl.)6, 261–273 (1953).

    Google Scholar 

  • Ignatieva, G. M., Kostomarova, A. A.: Duration of the mitotic cycle in the period of synchronous cleavage divisions (t0) and its relationship to temperature in the loach embryo. Dokl. Akad. Nauk SSSR168, 330–333 (1966).

    Google Scholar 

  • Kauffmann, S. L.: Lengthening of the generation cycle during embryonic differentiation of the mouse neural tube. Exp. Cell Res.49, 420–424 (1968).

    Google Scholar 

  • Lovtrup, S.: Utilization of energy sources during Amphibian embryogenesis at low temperatures. J. exp. Zool.140, 383–394 (1959).

    Google Scholar 

  • Mazia, D.: Synthetic activities leading to mitosis. J. cell. comp. Physiol.62 (Suppl. 1), 123–140 (1963).

    Google Scholar 

  • Neskovič, B. A.: Signs of activation of genes in developmental phases of L. strain cells. Iugoslav. Physiol. Pharmacol. Acta3, 169–175 (1967).

    Google Scholar 

  • Peter, K.: Die Dauer indirekter Kernteilung bei Amphibien. Z. Morph. Anthrop.24, 23–26 (1924).

    Google Scholar 

  • Quastler, H., Sherman, F. G.: Cell population kinetics in the intestinal epithelium of the mouse. Exp. Cell Res.17, 420–438 (1959).

    Google Scholar 

  • Rao, P. N., Engelberg, J.: Hela cells: effects of temperature on the life cycle. Science148, 1092–1094 (1965).

    Google Scholar 

  • —, Engelberg, J.: Mitotic duration and its variability in relation to temperature in Hela cells. Exp. Cell Res.52, 198–208 (1968).

    Google Scholar 

  • Reddan, J. R., Rothstein, H.: Growth dynamics of an Amphibian tissue. J. Cell Physiol.67, 307–318 (1966).

    Google Scholar 

  • Rott, N. N., Sheveleva, G. A.: Changes in the rate of cell divisions in the course of early development of diploïd haploïd loach embryos. J. Embryol. exp. Morphol.20, 141–150 (1968).

    Google Scholar 

  • Shapiro, I. M., Lubinnikova, E. I.: Model of a stabilized cell population. Dokl. Akad. Nauk SSSR169, 467–469 (1966).

    Google Scholar 

  • Sisken, J. E., Morasca, L., Kibby, S.: Effect of temperature on the kinetics of the mitotic cycle of Mammalian cells in culture. Exp. Cell Res.39, 103–116 (1965).

    Google Scholar 

  • Starkey, W. E.: The migration and renewal of tritium labelled cells in the developping enamel organ of rabbits. J. Brit. dental. Ass.115, 143–163 (1963).

    Google Scholar 

  • Van't Hof, J., Ying, H. K.: Relationship between the duration of the mitotic cycle, the rate of cell production and the rate of growth ofPisum roots at different temperatures. Cytologia (Tokyo)29, 399–406 (1964).

    Google Scholar 

  • Vendrely, C., Chany, C., Robbe-Maridor, F.: Influence de la température sur la durée des phases du cycle de génération de cellules en cultures. Bull. Cancer55, 21–29 (1968).

    Google Scholar 

  • Wimber, D. E.: Duration of the nuclear cycle inTradescantia root tips at three temperatures as measured with H3-thymidine. Amer. J. Bot.53, 21–24 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brugal, G. Étude autoradiographique de l'influence de la température sur la prolifération cellulaire chez les embryons âgés dePleurodeles waltlii Michah. (Amphibien, Urodéle). W. Roux' Archiv f. Entwicklungsmechanik 168, 205–225 (1971). https://doi.org/10.1007/BF00634064

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00634064

Navigation