Skip to main content

Manipulation of Developmental Function in Turtles with Notes on Alligators

  • Protocol
  • First Online:
Vertebrate Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1920))

Abstract

Reptiles have great taxonomic diversity that is reflected in their morphology, ecology, physiology, modes of reproduction, and development. Interest in comparative and evolutionary developmental biology makes protocols for the study of reptile embryos invaluable resources. The relatively large size, seasonal breeding, and long gestation times of turtles epitomize the challenges faced by the developmental biologist. We describe protocols for the preparation of turtle embryos for ex ovo culture, electroporation, in situ hybridization, and microcomputed tomography. Because these protocols have been adapted and optimized from methods used for frog, chick, and mouse embryos, it is likely that they could be used for other reptilian species. Notes are included for alligator embryos where appropriate.

Original data underlying this manuscript can be accessed from the Stowers Original Data Repository at http://www.stowers.org/research/publications/libpb-1396

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 10 July 2019

    The author added a sentence to this chapter. The text has been added to the chapter opening page.

References

  1. MacCord K, Caniglia G, Moustakas-Verho JE, Burke AC (2015) The dawn of chelonian research: turtles between comparative anatomy and embryology in the 19th century. J Exp Zool B Mol Dev Evol 324B:169–180

    Article  Google Scholar 

  2. Sun W, Cai H, Zhang G, Zhang H, Bao H, Wang L et al (2017) Dmrt1 is required for primary male sexual differentiation in Chinese soft-shelled turtle Pelodiscus sinensis. Sci Rep 7:4433

    Article  Google Scholar 

  3. Nomura T, Yamashita W, Gotoh H, Ono K (2015) Genetic manipulation of reptilian embryos: toward an understanding of cortical development and evolution. Front Neurosci 9:1–11

    Article  Google Scholar 

  4. Rice R, Kallonen A, Cebra-Thomas J, Gilbert SF (2016) Development of the turtle plastron, the order-defining skeletal structure. PNAS 113:5317–5322

    Article  CAS  Google Scholar 

  5. Moustakas-Verho JE, Zimm R, Cebra-Thomas J, Lempiäinen NK, Kallonen A, Mitchell KL et al (2014) The origin and loss of periodic patterning in the turtle shell. Development 141:3033–3039

    Article  CAS  Google Scholar 

  6. Williamson SA, Evans RG, Reina RD (2017) When is embryonic arrest broken in turtle eggs? Physiol Biochem Zool 90:523–532

    Article  Google Scholar 

  7. Greenbaum E (2002) A standardized series of embryonic stages for the emydidae turtle Trachemys scripta. Can J Zool 80:1350–1370

    Article  Google Scholar 

  8. Yntema CL (1968) A series of stages in the embryonic development of Chelydra serpentina. J Morphol 125:219–252

    Article  CAS  Google Scholar 

  9. Cebra-Thomas J, Tan F, Sistla S, Estes E, Bender G, Kim C et al (2005) How the turtle forms its shell: a paracrine hypothesis of carapace formation. J Exp Zool B Mol Dev Evol 304B:558–569

    Article  CAS  Google Scholar 

  10. Muramatsu T, Mizutani Y, Ohmori Y, Okumura J (1997) Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem Biophys Res Commun 230:376–380

    Article  CAS  Google Scholar 

  11. Momose T, Tonegawa A, Takeuchi J, Ogawa H, Umesono K, Yasuda K (1999) Efficient targeting of gene expression in chick embryos by microelectroporation. Develop Growth Differ 41:335–344

    Article  CAS  Google Scholar 

  12. Itasaki N, Bel-Vialar S, Krumlauf R (1999) ‘Shocking’ developments in chick embryology: electroporation and in ovo gene expression. Nat Cell Biol 1:E203–E207

    Article  CAS  Google Scholar 

  13. Haas K, Sin WC, Javaherian A, Li Z, Cline HT (2001) Single-cell electroporation for gene transfer in vivo. Neuron 29:583–591

    Article  CAS  Google Scholar 

  14. Moustakas JE (2008) Development of the carapacial ridge: implications for the evolution of genetic networks in turtle shell development. Evol Dev 10:29–36

    Article  Google Scholar 

  15. Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:11

    Article  Google Scholar 

  16. Yntema CL (1964) Procurement and use of turtle embryos for experimental procedures. Anat Rec 149:577–586

    Article  CAS  Google Scholar 

  17. Burke AC (1991) The development and evolution of the turtle body plan. Inferring intrinsic aspects of the evolutionary process from experimental embryology. Am Zool 31:616–627

    Article  Google Scholar 

  18. Nagashima H, Uchida K, Yamamoto K, Kuraku S, Usuda R, Kuratani S (2007) Turtle-chicken chimera: an experimental approach to understanding evolutionary innovation in the turtle. Dev Dyn 232:149–161

    Article  Google Scholar 

  19. Ewert MA (1985) Embryology of turtles. In: Gans C, Billet F, Maderson PFA (eds) Biology of the reptilia, vol 14. John Wiley and Sons, New York, pp 271–328

    Google Scholar 

  20. Ferguson MWJ (1985) Reproductive biology and embryology of the crocodilians. In: Gans C, Billet F, Maderson PFA (eds) Biology of the reptilia, vol 14. John Wiley and Sons, New York, pp 329–491

    Google Scholar 

  21. Williamson SA, Evans RG, Robinson NH, Reina RD (2017) Hypoxia as a novel method for preventing movement-induced mortality during translocation of turtle eggs. Biol Conserv 216:86–92

    Article  Google Scholar 

  22. Williamson SA, Evans RG, Manolis SC, Webb GJ, Reina RD (2017) Ecological and evolutionary significance of a lack of capacity for extended developmental arrest in crocodilian eggs. R Soc Open Sci 4:171439

    Article  Google Scholar 

  23. Bull JJ, Vogt RC, McCoy CJ (1982) Sex determining temperatures in turtles: a geographic comparison. Evolution 36:326–332

    Article  CAS  Google Scholar 

  24. Wibbels T, Bull JJ, Crews D (1991) Chronology and morphology of temperature-dependent sex determination. J Exp Zool 260:371–381

    Article  CAS  Google Scholar 

  25. Ferguson MWJ, Joanen T (1982) Temperature-dependent sex determination in Alligator mississippiensis. J Zool Lond 200:143–177

    Article  Google Scholar 

  26. Krull CE, Fengyun S, Swartz ME, Eberhart J, McLennan R, Chen Y et al (2011) Electroporation of chick and mouse embryos. In: Imaging in developmental biology: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 119–142

    Google Scholar 

  27. Lainoff AJ, Moustakas-Verho JE, Hu D, Kallonen A, Marcucio RS, Hlusko LJ (2015) A comparative examination of odontogenic gene expression in both toothed and toothless amniotes. J Exp Zool B Mol Dev Evol 324B:255–269

    Article  Google Scholar 

  28. Moustakas JE, Smith KK, Hlusko LJ (2011) Evolution and development of the mammalian dentition: Insights from the marsupial Monodelphis domestica. Developmental Dynamics 240 (1):232–239

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Academy of Finland (JEM-V), Stowers Institute for Medical Research (RM, PMK), and NSF grant IOS-145177 (JACT). We are grateful to Kevin Padian, Richard Harland, Marvalee Wake, Scott Gilbert, Concordia Turtle Farm, Kliebert’s Turtle & Alligator Farm, and Ruth M. Elsey and the Louisiana Department of Wildlife and Fisheries.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moustakas-Verho, J.E., McLennan, R., Spengler, J., Kulesa, P.M., Cebra-Thomas, J.A. (2019). Manipulation of Developmental Function in Turtles with Notes on Alligators. In: Pelegri, F. (eds) Vertebrate Embryogenesis. Methods in Molecular Biology, vol 1920. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9009-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9009-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9008-5

  • Online ISBN: 978-1-4939-9009-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics