Skip to main content
Log in

The use of electrostatic probes for plasma diagnostics—A review

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The use of electrostatic, or Langmuir, probes for plasma diagnostics is reviewed. The emphasis is on experimental implementation and current techniques, and particular attention is paid to sources of error in theoretical interpretation as well as to experimental problems that can occur in complex, reactive plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leonard B. Loeb,Basic Processes of Gaseous Electronics, University of California Press (1955).

  2. Leonard B. Loeb,Recent Advances in Basic Processes of Gaseous Electronics, Berkeley, California (1973).

  3. Francis F. Chen, Electric Probes inPlasma Diagnostic Techniques R. H. Huddlestone and S. L. Leonard, eds., Academic Press, New York (1965).

    Google Scholar 

  4. J. D. Swift and M. J. R. Schwar,Electrical Probes for Plasma Diagnostics American Elsevier, New York (1969).

    Google Scholar 

  5. Paul M. Chung, Lawrence Talbot, and Kennell J. Touryan,Electric Probes in Stationary and Flowing Plasmas: Theory and Application Springer-Verlag, New York (1975).

    Google Scholar 

  6. P. R. Smy, The use of Langmuir probes in the study of high-pressure plasmas,Adv. Phys. 25, 517–553 (1976).

    Google Scholar 

  7. Kurt F. Schoenberg, Pulsed electrostatic probes as a diagnostic for transient plasmas,Rev. Sci. Instrum. 49, 1377–1383 (1978).

    Google Scholar 

  8. I. Bernstein and I. Rabinowitz, Theory of electrostatic probes in a low-density plasma,Phys. Fluids 2, 112–121 (1959).

    Google Scholar 

  9. S. H. Lam, The Langmuir probe in a collisionless plasma,Phys. Fluids 8, 73–87 (1965).

    Google Scholar 

  10. Peter Bletzinger and Alan Garscadden, The CO2 laser plasma,Proc. IEEE 59, 675–679 (1971).

    Google Scholar 

  11. I. P. Shkarofsky, Study of electrostatic probes in nonequilibrium plasmas, Technical Report ARL TR 75-0228, Aerospace Research Laboratories, Wright-Patterson AFB, Ohio 45433.

  12. R. E. Kemp and J. M. Sellen, Jr., Plasma potential measurements by electron emissive probes,Rev. Sci. Instrum. 37, 455–461 (1966).

    Google Scholar 

  13. D. R. Nordlund and O. P. Breaux, Analog plasma diagnostic system,Rev. Sci. Instrum. 42, 248–250 (1972); Design, development, and application of a complete analog plasma-diagnostic system, Technical Report AFAL-TR-71-294, Air Force Avionics Laboratory, AFSC, Wright-Patterson AFB, Ohio, September 1971.

    Google Scholar 

  14. K. Shimizu and H. Amemiya, Rapid measurement of the second derivative of the probe characteristic by using a delay circuit,J. Phys. E: Sci. Instrum. 10, 389–391 (1977).

    Google Scholar 

  15. P. R. Mossack and M. G. Rusbridge, A semi-automatic system for the analysis of double-probe measurements in a steady-state plasma,J. Phys. E: Sci. Instrum. 11, 653–656 (1978).

    Google Scholar 

  16. B. A. Hoegger and A. Bulliard, Double probe circuit used in pulsed plasma diagnostics,Rev. Sci. Instrum. 51, 735–737 (1980).

    Google Scholar 

  17. G. A. Branner, E. M. Friar, and G. Medicus, Automatic plotting devices for the second derivative of Langmuir probe curves,Rev. Sci. Instrum. 34, 231–238 (1963).

    Google Scholar 

  18. S. L. F. Richards, G. J. Lloyd, and R. P. Jones, A d.c. and second-derivative Langmuir probe measuring system,J. Phys. E: Sci. Instrum. 5, 595–597 (1972).

    Google Scholar 

  19. H. Amemiya and K. Shimizu, Frequency dependence of the alternating current method for measuring the electron energy distribution function in plasmas,J. Phys. E: Sci. Instrum. 12, 581–583 (1979).

    Google Scholar 

  20. D. G. Bills, R. B. Holt, and B. T. McClure, Pulsed probe measurements,J. Appl. Phys. 33, 29–33 (1962).

    Google Scholar 

  21. H. J. Oskam, R. W. Carlson, and T. Okuda, Studies of the dynamic properties of Langmuir probes. III: Discussion of results,Physica 30, 375–386 (1964).

    Google Scholar 

  22. R. W. Carlson, T. Okuda, and H. J. Oskam, Studies of the dynamic properties of Langmuir probes. I: Measuring methods,Physica 30, 182–192 (1964).

    Google Scholar 

  23. F. W. Crawford and R. Grard, Low-frequency impedance characteristics of a Langmuir probe in a plasma,J. Appl. Phys. 37, 180–183 (1966).

    Google Scholar 

  24. T. Okuda, R. W. Carlson, and H. J. Oskam, Studies of the dynamic properties of Langmuir probes. II: Experimental results,Physica 30, 193–205 (1964).

    Google Scholar 

  25. A. Garscadden and K. G. Emeleus, Notes on the effect of noise on Langmuir probe characteristics,Proc. Phys. Soc. 79, 535–541 (1962).

    Google Scholar 

  26. G. A. Woolsey and E. W. Gray, Langmuir probe analysis in a positive column containing moving striations,J. Sci. Instrum. 43, 611–612 (1966).

    Google Scholar 

  27. A. Garscadden and P. Bletzinger, Langmuir probe measurements in the presence of oscillation,Rev. Sci. Instrum. 35, 912 (1964).

    Google Scholar 

  28. M. G. Drouet and G. G. Cloutier, Necessity of phase reference in Langmuir probe analysis of a positive column containing moving striations,J. Phys. E: Sci. Instrum. 1, 1035–1036 (1968).

    Google Scholar 

  29. E. Wasserstrom, C. H. Su, and R. F. Probstein, Kinetic theory approach to electrostatic probes,Phys. Fluids 8, 56–72 (1965).

    Google Scholar 

  30. I. M. Cohen, Asymptotic theory of spherical electrostatic probes in a slightly ionized, collision-dominated gas,Phys. Fluids 6, 1492–1499 (1963).

    Google Scholar 

  31. C. H. Su and S. H. Lam, Continuum theory of spherical electrostatic probes,Phys. Fluids 6, 1479–1491 (1963).

    Google Scholar 

  32. R. M. Clements and P. R. Smy, Ion current to a spherical probe in a flowing high-pressure plasma under thin sheath conditions,Proc. IEEE 117, 1721–1724 (1970).

    Google Scholar 

  33. R. M. Clements and P. R. Smy, Anomalous currents to a spherical electrostatic probe in a flame plasma,Br. J. Appl. Phys. 2, 1731–1737 (1969).

    Google Scholar 

  34. R. M. Clements and P. R. Smy, Electrostatic probe studies in a flame plasma,J. Appl. Phys. 40, 4553–4558 (1969).

    Google Scholar 

  35. J. F. Waymouth, Perturbation of a plasma by a probe,Phys. Fluids 7, 1843–1854 (1964).

    Google Scholar 

  36. T. Okuda and K. Yamamoto, Disturbance phenomena in probe measurements of ionized gases,J. Phys. Soc. Jpn. 13, 1212–1223 (1958).

    Google Scholar 

  37. R. L. F. Boyd and J. B. Thompson, The operation of Langmuir probes in electronegative gases,Proc. R. Soc. London 252, 102–119 (1959).

    Google Scholar 

  38. J. B. Thompson, Negative ions in the positive column of the oxygen discharge,Proc. Phys. Soc. 73, 818–821 (1959).

    Google Scholar 

  39. J. F. Waymouth, Pulse technique for probe measurements in gas discharges,J. Appl. Phys. 30, 1404–1412 (1959).

    Google Scholar 

  40. H. S. Bulter and G. S. Kino, Plasma sheath formation by radio-frequency fields,Phys. Fluids 6, 1346–1355 (1963).

    Google Scholar 

  41. A. Stampa and H. O. Wulf, The behavior of electrostatic double probes in plasmas with high amplitude R.F. Fields,J. Phys. D: Appl. Phys. 11, 1119–1124 (1978).

    Google Scholar 

  42. R. M. Howe, Probe studies of energy distributions and radial variations in a low-pressure mercury arc,J. Appl. Phys. 24, 881–894 (1953).

    Google Scholar 

  43. G. Wehner and G. Medicus, Reliability of probe measurements in hot cathode gas diodes,J. Appl. Phys. 23, 1035–1046 (1952).

    Google Scholar 

  44. M. A. Easley, Probe technique for the measurement of electron temperature,J. Appl. Phys. 22, 590–593 (1951).

    Google Scholar 

  45. R. J. D'Arey, Dielectric impurities and surface instability in Langmuir probe plasma measurements,J. Phys. D: Appl. Phys. 7, 1391–1401 (1974).

    Google Scholar 

  46. A. G. Coulter and G. S. Higginson, Probe contamination in a hydrogen plasma,J. Electron. Control 15, 437–445 (1963).

    Google Scholar 

  47. B. M. Wunderer, Reproducible control of the voltage of Langmuir probes in steady-state and afterglow plasmas,J. Phys. E: Sci. Instrum. 8, 938–942 (1975).

    Google Scholar 

  48. Robert A. Olson and D. R. Nordlund, Automatic plotting of Langmuir-probe susceptance- and conductance-voltage curves,J. Appl. Phys. 43, 2780–2785 (1972).

    Google Scholar 

  49. Robert A. Olson, Dielectric relaxation in insulating layers on contaminated Langmuir probes,J. Appl. Phys. 43, 2785–2789 (1972).

    Google Scholar 

  50. B. M. Oliver, R. M. Clements, and P. R. Smy, Radio-frequency floating double probe as a plasma diagnostic,J. Appl. Phys. 41, 2117–2122 (1970).

    Google Scholar 

  51. R. M. Clements, Plasma diagnostics with electric probes,J. Vac. Sci. Technol. 15, 193–198 (1978).

    Google Scholar 

  52. H. M. Kinderdyk, and J. Van Eck, Comparison of electron densities measured with Langmuir probes and with two different microwave devices,Physica 59, 257–284 (1972).

    Google Scholar 

  53. G. J. Schulz and S. C. Brown, Microwave study of positive ion collection by probes,Phys. Rev. 98, 1642–1649 (1955).

    Google Scholar 

  54. S. A. Self and C. H. Shih, Theory and measurements for ion collection by a spherical probe in a collisionless plasma,Phys. Fluids 11, 1532–1545 (1968).

    Google Scholar 

  55. M. Sicha, J. Gajdusek and S. Veprek, Comparison of microwave and probe methods of plasma diagnostics,Br. J. Appl. Phys. 17, 1511–1514 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherrington, B.E. The use of electrostatic probes for plasma diagnostics—A review. Plasma Chem Plasma Process 2, 113–140 (1982). https://doi.org/10.1007/BF00633129

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00633129

Key words

Navigation