Skip to main content
Log in

The thermal conductivity of α uranium between 5 and 100 K

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The thermal and electrical conductivities of uranium have been measured over the temperature range 5–100 K. Both in the “as-received” condition and after annealing, the thermal conductivity results show a maximum at low temperatures followed by a shallow minimum with increasing temperature. Typical values for the annealed specimen were 65 W m−1 K−1 at 15 K and 35 W m−1 K−1 at 100 K. The temperature dependence can be explained by an electronic conductivity increasing with temperature, and a significant lattice contribution which is almost constant over the temperature range 40–100 K. A small secondary peak centered at 55 K is observed associated with the α-α0 phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Tyler, A. C. Wilson, and G. J. Wolga,Trans. AIME 197, 1238 (1953).

    Google Scholar 

  2. H. M. Rosenberg,Phil. Trans. Roy. Soc. London A247, 491 (1955).

    Google Scholar 

  3. J. A. Lee, P. W. Sutcliffe, and K. Mendelssohn,Phys. Letters 30A, 106 (1969).

    Google Scholar 

  4. J. F. Andrew,J. Phys. Chem. Solids 28, 577 (1967).

    Google Scholar 

  5. C. S. Barrett, M. H. Mueller, and R. L. Hitterman,Phys. Rev. 129, 625 (1963).

    Google Scholar 

  6. A. Hough, J. A. C. Marples, M. J. Mortimer, and J. A. Lee,Phys. Letters 27A, 222 (1968).

    Google Scholar 

  7. E. S. Fisher and D. Dever,Phys. Rev. 170, 607 (1968).

    Google Scholar 

  8. G. T. Meadon, thesis, University of Oxford, 1961.

  9. S. Arajs and R. V. Colvin,J. Less Common Metals 7, 54 (1964).

    Google Scholar 

  10. T. G. Berlincourt,Phys. Rev. 114, 969 (1959).

    Google Scholar 

  11. M. Rosen,Phys. Letters 28A, 438 (1968).

    Google Scholar 

  12. T. H. Geballe, B. T. Matthias, K. Andres, E. S. Fisher, T. F. Smith, and W. H. Zachariasen,Science 152, 755 (1966).

    Google Scholar 

  13. J. A. C. Marples,J. Phys. Chem. Solids 31, 2421 (1970).

    Google Scholar 

  14. T. F. Smith and W. E. Gardner,Phys. Rev. 140, 1620 (1965).

    Google Scholar 

  15. J. C. Ho, W. E. Phillips, and T. F. Smith,Phys. Rev. Letters 17, 964 (1966).

    Google Scholar 

  16. M. Salesse,Atom Wirtschaft 6, 225 (1961).

    Google Scholar 

  17. S. T. Konobeevsky, A. S. Zaimovsky, B. M. Levitsky, Y. N. Sokursky, N. T. Chebotarev, Y. N. Bobkov, P. P. Egoror, G. N. Nikolaer, and A. A. Ivanov,2nd Intl. Conf. Peaceful Uses of Atomic Energy, 1953, Vol. 6 (United Nations, Geneva, 1958), p. 194.

    Google Scholar 

  18. A. B. McIntosh and H. J. Heal,2nd Intl. Conf. Peaceful Uses of Atomic Energy, 1953, Vol. 6 (United Nations, Geneva, 1958), p. 413.

    Google Scholar 

  19. D. A. Howl,J. Nucl. Mat. 19, 9 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, R.O.A., Lee, J.A. The thermal conductivity of α uranium between 5 and 100 K. J Low Temp Phys 4, 415–419 (1971). https://doi.org/10.1007/BF00628741

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00628741

Keywords

Navigation