Skip to main content
Log in

Effect of gas evolution on mass transfer in an electrochemical reactor

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Experiments were conducted to study the effect of gas bubbles generated at platinum microelectrodes, on mass transfer at a series of copper strip segmented electrodes strategically located on both sides of microelectrodes in a vertical parallel-plate reactor. Mass transfer was measured in the absence and presence of gas bubbles, without and with superimposed liquid flow. Mass transfer results were compared, wherever possible, with available correlations for similar conditions, and found to be in good agreement. Mass transfer was observed to depend on whether one or all copper strip electrodes were switched on, due to dissipation of the concentration boundary layer in the interelectrode gaps. Experimental data show that mass transfer was significantly enhanced in the vicinity of gas generating microelectrodes, when there was forced flow of electrolyte. The increase in mass transfer coefficient was as much as fivefold. Since similar enhancement did not occur with quiescent liquid, the enhanced mass transfer was probably caused by a complex interplay of gas bubbles and forced flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

electrode area (cm2)

a :

constant in the correlation (k = aRe m, cm s−1)

C R, bulk :

concentration of the reactant in the bulk (mol−1 dm−3)

D :

diffusion coefficient (cm2 s−1)

d h :

hydraulic diameter of the reactor (cm)

F :

Faraday constant

Gr :

Grashof number =gL 3Δρ/ν2ρ (dimensionless)

g :

gravitational acceleration (cm s−2)

i g :

gas current density (A cm−2)

i L :

mass transfer limiting current density (A cm−2)

k :

mass transfer coefficient (cm s−1)

L :

characteristic length (cm)

m :

exponent in correlations

n :

number of electrons involved in overall electrode reaction, dimensionless

Re :

Reynolds number =Ud hν−1 (dimensionless)

Sc :

Schmidt number = νD −1 (dimensionless)

Sh :

Sherwood number =kLD −1 (dimensionless)

U :

mean bulk velocity (cm s−1)

x :

distance (cm)

δN :

‘equivalent’ Nernst diffusion layer thickness (cm)

ν:

kinematic viscosity (cm2 s−1)

Δϱ:

density difference = (ρL − ρ), (g cm−3)

ϱL :

density of the liquid (g cm−3)

ϱ:

average density of the two-phase mixture (g cm−3)

∈:

void fraction (volumetric gas flow/gas and liquid flow)

References

  1. R. E. W. Jansson and R. Marshall,Electrochim. Act 27 (1982) 823.

    Google Scholar 

  2. W. S. Wu, G. P. Rangaiah and M. Fleischmann,J. Appl. Electrochem. 23 (1993) 113.

    Google Scholar 

  3. H. Vogt, ‘Gas Evolving Electrode in Comprehensive Treatise of Electrochemistry’, Vol. 6 (edited by E. Yeager, J. O'M. Bockris, B. E. Conway and S. Sarangapani), Plenum Press, New York (1983).

    Google Scholar 

  4. G. H. Sedahmed,J. Appl. Electrochem. 10 (1980) 351.

    Google Scholar 

  5. A. M. Ahmed and G. H. Sedahmed,J. Electrochem. Soc. 135 (1988) 2766.

    Google Scholar 

  6. H. Vogt,Electrochim. Acta 23 (1978) 203.

    Google Scholar 

  7. C. I. Elsner and S. L. Marchiano,J. Appl. Electrochem. 12 (1982) 735.

    Google Scholar 

  8. L. J. J. Janssenibid. 17 (1987) 1177.

    Google Scholar 

  9. H. Vogt,ibid. 19 (1989) 713.

    Google Scholar 

  10. M. G. Fouad and G. H. Sedahmed,Electrochim. Acta 18 (1973) 55.

    Google Scholar 

  11. L. J. J. Janssen and E. Barendrecht,ibid. 24 (1979) 693.

    Google Scholar 

  12. M. F. Sherbiny, A. A. Zatout, M. Hussien, G. H. Sedahmed,J. Appl. Electrochem. 21 (1991) 537.

    Google Scholar 

  13. P. J. Sides, ‘Modern Aspects of Electrochemistry’, No. 18 (edited by R. E. White), Plenum Press, New York (1986) 303.

    Google Scholar 

  14. N. Ibl,Electrochim. Acta 24 (1979) 1105.

    Google Scholar 

  15. L. Sigrist, O. Dossenbach and N. Ibl,Int. J. Heat & Mass Transfer 22 (1979) 1393.

    Google Scholar 

  16. O. N. Cavatorta, U. Böhm and A. M. Chiappori De Del Giorgio,J. Appl. Electrochem. 21 (1991) 40.

    Google Scholar 

  17. F. Giron, G. Valentin, M. Lebouche and A. Storck,J. Appl. Electrochem. 15 (1985) 557.

    Google Scholar 

  18. C. W. Tobias, M. Eisenberg and C. R. Wilke,J. Electrochem. Soc. 99 (12) (1952) 359C.

    Google Scholar 

  19. G. Marrucci and L. Nicodemo,Chem. Engg. Sci. 22 (1967) 1257.

    Google Scholar 

  20. R. A. M. Al-Hayes and R. H. S. Winterton.Int. J. Heat & Mass Transfer 24 (1981) 223.

    Google Scholar 

  21. D. J. Pickett, ‘Electrochemical Reactor Design’, Elsevier, Barking, UK (1977) Chapter 4.

    Google Scholar 

  22. N. P. Brandon and G. H. Kelsall,J. Appl. Electrochem. 15 (1985) 475.

    Google Scholar 

  23. G. Kreysa and M. Kuhn,ibid. 15 (1985) 517.

    Google Scholar 

  24. H. Vogt,ibid 17 (1987) 419.

    Google Scholar 

  25. E. J. Fenech and C. W. Tobias,Electrochim. Acta 2 (1960) 311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W.S., Rangaiah, G.P. Effect of gas evolution on mass transfer in an electrochemical reactor. J Appl Electrochem 23, 1139–1146 (1993). https://doi.org/10.1007/BF00625587

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00625587

Keywords

Navigation