Skip to main content

Advertisement

Log in

An Integrated Approach to Understanding the Mass Transfer and Reaction Processes in a Pulsed High-Voltage Discharge Reactor

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The effect of pulsed high-voltage discharge on mass transfer and reaction processes in a needle-plate reactor was studied. Bubble size distributions and characteristic parameters were determined by photography, implying that inlet air bubbles could be broken into smaller ones effectively by discharge. The mass transfer parameters including specific interfacial area (a), volumetric mass transfer coefficient (k L a), and liquid-side mass transfer coefficient (k L) were obtained by Danckwerts-plot, reflecting the mass transfer processes. In addition, 4-chlorophenol (4-CP) decomposition was determined under the same experimental conditions. The results showed that the conclusions of 4-CP removal were coincided with the statistical results of bubble images, illustrating that higher peak voltage, pulsed frequency and appropriate air flow rate are beneficial to mass transfer and reaction. However, there was a slight difference between 4-CP removal and mass transfer parameters at higher air flow rate. Therefore, it is more reasonable to optimize the operating conditions of a pulsed high-voltage discharge reactor via combining image acquisition and mass transfer parameters with the results of pollutant degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sun B, Sato M, Clements JS (1999) Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution. J Phys D Appl Phys 32:1908–1915

    Article  CAS  Google Scholar 

  2. Joshi AA, Locke BR, Arce P, Finney WC (1995) Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J Hazard Mater 41:3–30

    Article  CAS  Google Scholar 

  3. Sato M, Ohgiyama T, Clements JS (1996) Formation of chemical specie and their effects on microorganisms using a pulsed high-voltage discharge in water. IEEE Trans Ind Appl 32:106–112

    Article  CAS  Google Scholar 

  4. Sun B, Sato M, Clements JS (1997) Optical study of active species produced by a pulsed streamer corona discharge in water. J Electrostat 39:189–202

    Article  CAS  Google Scholar 

  5. Sun B, Sato M, Clements JS (2000) Oxidative processes occurring when pulsed high voltage discharges degrade phenol in aqueous solution. Environ Sci Technol 34:509–513

    Article  CAS  Google Scholar 

  6. Lu X, Liu K, Liu M, Pa Y, Zhang H (2001) Research on high density plasma of pulsed discharge in water. Pulsed Power Plasma Sci 2:1595–1598

    Google Scholar 

  7. Hemmert D, Shiraki K, Yokoyama T, Katsuki S, Bluhm H, Akiyama H (2003) Optical diagnostics of shock waves generated by a pulsed streamer discharge in water. 14th IEEE Int Pulsed Power Conf 1:232–235

  8. Clements JS, Sato M, Davis RH (1987) Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high voltage discharge in water. IEEE Trans Ind Appl IA 23:224–235

  9. Sunka P, Babicky V, Clupek M, Fuciman M, Schmidt J, Benes J (2001) Generation of focused shock waves by multi-channel discharges in water. Pulsed Power Plasma Sci 2:1134–1137

    Google Scholar 

  10. Piskarev IM, Rylova AE, Sevast’yanov AI (1996) Formation of ozone and hydrogen peroxide during an electrical discharge in the solution-gas system. Russ J Electrochem 32:827–829

    CAS  Google Scholar 

  11. McClurkin JD, Maier DE, Ileleji KE (2013) Half-life time of ozone as a function of air movement and conditions in a sealed container. J Stored Prod Res 55:41–47

    Article  Google Scholar 

  12. Kereszturi A, Gobi S (2014) Possibility of H2O2 decomposition in thin liquid films on Mars. Planet Space Sci 103:153–166

    Article  CAS  Google Scholar 

  13. Cheng FC, Jen JF, Tasi TH (2002) Hydroxyl radical in living systems and its separation methods. J Chromatogr B 781:481–496

    Article  CAS  Google Scholar 

  14. Breusegem FV, Vranová E, Dat JF, Inzé D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  15. Ameta SC, Punjabi PB, Chobisa CS, Mangal N, Bhardwaj R (1990) Singlet molecular oxygen. Asian J Chem Rev 1:106–124

    CAS  Google Scholar 

  16. Lei LC, Zhang Y, Zhang XW, Du YX, Dai QZ, Han S (2007) Degradation performance of 4-Chlorophenol as a typical organic pollutant by a pulsed high voltage discharge system. Ind Eng Chem Res 46:5469–5477

    Article  CAS  Google Scholar 

  17. Wang H, Li J, Quan X (2006) Decoloration of azo dye by a multi-needle-to-plate high-voltage pulsed corona discharge system in water. J Electrostat 64:416–421

    Article  CAS  Google Scholar 

  18. Yin X, Bian W, Shi J (2009) 4-chlorophenol degradation by pulsed high voltage discharge coupling internal electrolysis. J Hazard Mater 166:1474–1479

    Article  CAS  Google Scholar 

  19. Bian W, Song X, Liu D, Zhang J, Chen X (2013) Actions of nitrogen plasma in the 4-chrolophenol degradation by pulsed high-voltage discharge with bubbling gas. Chem Eng J 219:385–394

    Article  CAS  Google Scholar 

  20. Bian W, Song X, Liu D, Zhang J, Chen X (2011) The intermediate products in the degradation of 4-chlorophenol by pulsed high voltage discharge in water. J Hazard Mater 192:1330–1339

    Article  CAS  Google Scholar 

  21. Bian W, Ying X, Shi J (2009) Enhance degradation of p-chlorophenol in a novel pulsed high voltage discharge reactor. J Hazard Mater 162:906–912

    Article  CAS  Google Scholar 

  22. Bian W, Song X, Shi J, Yin X (2012) Nitrogen fixed into HNO3 by pulsed high voltage discharge. J Electrostat 70:317–326

    Article  CAS  Google Scholar 

  23. Sun B, Aye NN, Gao Z, Lv D, Zhu X, Sato M (2012) Characteristics of gas-liquid pulsed discharge plasma reactor and dye decoloration efficiency. J Environ Sci 24:840–845

    Article  CAS  Google Scholar 

  24. Zhang J, Liu D, Bian W, Chen X (2012) Degradation of 2,4-dichorophenol by pulsed high voltage discharge in water. Desalination 304:49–56

    Article  CAS  Google Scholar 

  25. Tsea KL, Martinb T, McFarlanea CM, Nienowa AW (2003) Small bubble formation via a coalescence dependent break-up mechanism. Chem Eng Sci 58:275–286

    Article  Google Scholar 

  26. Jo D, Revankar ST (2010) Effect of coalescence and breakup on bubble size distributions in a two-dimensional packed bed. Chem Eng Sci 65:4231–4238

    Article  CAS  Google Scholar 

  27. Busciglio A, Grisafi F, Scargiali F, Brucato A (2010) On the measurement of bubble size distribution in gas-liquid contactors via light sheet and image analysis. Chem Eng Sci 65:2558–2568

    Article  CAS  Google Scholar 

  28. Wongsuchoto P, Charinpanitkul T, Pavasant P (2003) Bubble size distribution and gas-liquid mass transfer in airlift contactors. Chem Eng J 92:81–90

    Article  CAS  Google Scholar 

  29. Majumder SK, Kundu G, Mukherjee D (2006) Bubble size distribution and gas-liquid interfacial area in a modified down flow bubble column. Chem Eng J 122:1–10

    Article  CAS  Google Scholar 

  30. Sotiriadis AA, Thorpe RB, Smith JM (2005) Bubble size and mass transfer characteristics of sparged downwards two-phase flow. Chem Eng Sci 60:5917–5929

    Article  CAS  Google Scholar 

  31. Danckwerts PV (1951) Singnificance of liquid-film coefficients in gas absorption. Ind Eng Chem 43:1460–1467

    Article  CAS  Google Scholar 

  32. DeCoursey WJ (1974) Absorption with chemical reaction: development of a new relation for the Danckwerts model. Chem Eng Sci 29:1867–1872

    Article  CAS  Google Scholar 

  33. Khan W (1990) An extension of Danckwerts theoretical surface renewal model to mass transfer at contaminated turbulent interface. Math Comput Model 14:750–754

    Article  Google Scholar 

  34. Zhao W, Shi H, Wang D (2004) Modeling of mass transfer characteristics of bubble column reactor with surfactant present. J Zhejiang Univ Sci 5:714–720

    Article  CAS  Google Scholar 

  35. Linek V, Moucha T, Kordač M (2005) Mechanism of mass transfer from bubbles in dispersions Part I. Danckwerts’ plot method with sulphite solutions in the presence of viscosity and surface tension changing agents. Chem Eng Process 44:353–361

    Article  CAS  Google Scholar 

  36. Joshi JB (2001) Computation flow modeling and design of bubble column reactors. Chem Eng Sci 56:5893–5933

    Article  CAS  Google Scholar 

  37. Painmanakul P, Loubière K, Hébrard G, Mietton-Peuchot M, Roustan M (2005) Effect of surfactants on liquid-side mass transfer coefficients. Chem Eng Sci 60:6480–6491

    Article  CAS  Google Scholar 

  38. Sardeing P, Painmanakul P, Hébrard G (2006) Effect of surfactants on liquid-side mass transfer coefficients in gas-liquid systems: a first step to modeling. Chem Eng Sci 61:6249–6260

    Article  CAS  Google Scholar 

  39. Vázquez G, Cancela MA, Riverol C, Alvarez E, Navaza JM (2000) Application of Danckwerts method in a bubble column Effects of surfactants on mass transfer coefficient and interfacial area. Chem Eng J 78:13–19

    Article  Google Scholar 

  40. Cents AHG, De Bruijn FT, Brilman DWF, Versteeg GF (2005) Validation of the Danckwerts-plot technique by simultaneous chemical absorption of CO2 and physical desorption of O2. Chem Eng Sci 60:5809–5818

    Article  CAS  Google Scholar 

  41. Danckwerts PV, Kennedy AM, Roberts D (1963) Kinetics of CO2 absorption in alkaline solutions-II: absorption in a packed column and tests of surface-renewal models. Chem Eng Sci 18:63–72

    Article  CAS  Google Scholar 

  42. Roberts D, Danckwerts PV (1962) Kinetics of CO2 absorption in alkaline solutions-I: transient absorption rates and catalysis by arsenite. Chem Eng Sci 17:961–969

    Article  CAS  Google Scholar 

  43. Dean DN, Fuchs MJ, Schaffer JM, Carbonell RG (1977) Batch absorption of CO2 by ree and microencapsulated carbonic anhydrase. Ind Eng Chem Fundam 16:452–458

    Article  CAS  Google Scholar 

  44. Danckwerts PV, Arvo L (1970) Gas-liquid reactions. J Electrochem Soc 117:369C–370C

    Article  Google Scholar 

  45. Cents AHG, Brilman DWF, Versteeg GF (2001) Gas absorption in an agitated gas–liquid–liquid system. Chem Eng Sci 56:1075–1083

    Article  CAS  Google Scholar 

  46. Danckwerts PV, Sharma MM (1966) The absorption of carbon dioxide into solutions of alkalis and amines. Inst Chem Engrs 44:244–280

    Google Scholar 

  47. Richards GM, Ratcliff GA, Danckwerts PV (1964) Kinetics of CO2 absorption-III: first-order reaction in a packed column. Chem Eng Sci 19:325–328

    Article  CAS  Google Scholar 

  48. Peng G, Liu J (2006) Improvement of hybird alkali measurement by adopting Chlorination barium method. J Jinling Inst Technol 22:102–105 (in Chinese)

    Google Scholar 

  49. Danckwerts PV, Gillham AJ (1966) The design of gas absorbers, I-methods for predicting rates of absorption with chemical reaction in packed columns, and tests with 11/2 in. Raschig rings. Trans Inst Chem Engrs 44:T42

    CAS  Google Scholar 

  50. Perry RH, Green DW, Maloney JQ (1997) Perry’s chemical engineers’ handbook. Mc Graw-Hill, New York

Download references

Acknowledgments

The financial support of this work by the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Suzhou Key Laboratory of Green Chemical Engineering is gratefully acknowledged. We thank Professor Jian Zhu for the great help during the bubble image acquisition process.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, M., Zhao, K., Lu, Y. et al. An Integrated Approach to Understanding the Mass Transfer and Reaction Processes in a Pulsed High-Voltage Discharge Reactor. Plasma Chem Plasma Process 35, 721–738 (2015). https://doi.org/10.1007/s11090-015-9625-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9625-x

Keywords

Navigation