Skip to main content
Log in

Multipurpose optimization of the elastic and thermophysical properties of fibrous composites

  • Published:
Mechanics of Composite Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. V. L. Narusberg and G. A. Teters, Stability and Optimization of Shells Made of Composites [in Russian], Riga (1988).

  2. N. V. Banichuk, V. V. Kobelev, and R. B. Rikards, Optimization of Structural Elements Made of Composite Materials [in Russian], Moscow (1988).

  3. Chemical Gas-Phase Deposition of High Melting Inorganic Materials. Collection of Articles [in Russian], Leningrad (1976).

  4. K. F. Rogers, L. N. Phillips, D. M. Kingston-Lee, B. Yates, M. J. Overy, J. P. Sargent, and B. A. McCalla, “The thermal expansion of carbon fibre-reinforced plastics. Pt. 1. The influence of fibre type and orientation,” J. Mater. Sci.,12, 718–733 (1977).

    Google Scholar 

  5. B. Yates, M. J. Overy, J. P. Sargent, B. A. McCalla, D. M. Kingston-Lee, L. N. Phillips, and K. F. Rogers, “The thermal expansion of carbon fibre-reinforced plastics. Pt. 2. The influence of fibre volume fraction,” J. Mater. Sci.,13, 433–440 (1978).

    Google Scholar 

  6. Industrial Polymer Composite Materials [in Russian], Moscow (1980).

  7. A. Zh. Lagzdin', V. P. Tamuzh, G. A. Teters, and A. F. Kregers, Method of Orientational Averaging in the Mechanics of Materials [in Russian], Riga (1989).

  8. A. F. Kregers, “Mathematical modeling of the thermal expansion of spatially reinforced composites,” Mekh. Kompozit. Mater., No. 3, 433–441 (1988).

    Google Scholar 

  9. A. F. Kregers and Yu. G. Melbardis, “Rigidity and thermal expansion of spatially reinforced composite,” Algoritmy Programmy, No. 8, 17 (1989).

    Google Scholar 

  10. A. F. Kregers, I. A. Repelis, and A. M. Tolks, “Investigation of the thermal conductivity of fibrous composite and its components,” Mekh. Kompozit. Mater., No. 4, 604–608 (1987).

    Google Scholar 

  11. A. F. Kregers and Yu. G. Melbardis, “Program for calculating the components of the tensor of thermal conductivity of a composite spatially reinforced by curved anisotropic reinforcement,” Algoritmy Programmy, No. 1, 8 (1988).

    Google Scholar 

  12. A. F. Kregers and Yu. G. Melbardis, “Self-adaption of a multidimensional nonlinear mathematical model on the basis of a bank of elementary functions,” Algoritmy Programmy, No. 10, 12 (1988).

    Google Scholar 

  13. V. 0. Églais, “Synthesis of the regression model of an object on the basis of tabulated data,” Izv. Akad. Nauk Latv. SSR, Ser. Fiz.-Tekh. Nauk No. 4, 109–112 (1980).

    Google Scholar 

  14. A. F. Kregers and Yu. G. Melbardis, “Multipurpose unconditional optimization,” Algoritmy Programmy, No. 3, 5 (1989).

    Google Scholar 

  15. A. F. Kregers, M. V. Goldmanis, and G. A. Teters, “Compromise optimization of a shallow spherical shell made of fibrous composites,” Mekh. Kompozit. Mater., No. 6, 1089–1094 (1988).

    Google Scholar 

  16. P. B. Sliede and V. O. Églais, “Statement of multicriterial problems of optimization, in: Problems of Dynamics and Strength, Issue 34, Riga (1977), pp. 16–21.

  17. L. A. Rastrigin, Systems of Extremal Control [in Russian], Moscow (1974).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, No. 1, pp. 37–47, January–February 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kregers, A.F., Melbardis, Y.G. & Rektin'sh, M.F. Multipurpose optimization of the elastic and thermophysical properties of fibrous composites. Mech Compos Mater 26, 29–39 (1990). https://doi.org/10.1007/BF00619417

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00619417

Keywords

Navigation