Skip to main content
Log in

The emission of neutral clusters in sputtering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The mass, angle, and energy resolved emission of neutral clusters in sputtering was studied for a variety of metals and semiconductors. The main phenomena and results are the following: (i) Cluster emission from a series of transition metals reveals a prominent contribution of clusters to the total flux of ejected particles but there is no simple scaling of cluster intensities with the average sputtering yields. With increasing number of constituents, relative intensities of neutral clusters decrease much faster than those of secondary-ion clusters. (ii) The relative intensities of clusters emitted from amorphous and crystalline semiconductors are identical, but the energy spectra of Ge n -clusters (n = 1–4) sputtered from Ge (111) peak at a slightly higher energy (1 eV) as compared to spectra taken from amorphous Ge. The intensities of all Ge n -clusters exhibit the same dependence on emission angle; this holds for both the amorphous and crystalline Ge-sample. (iii) The flux of neutral monomers, dimers, and trimers sputtered from Cu(111), Ni(111), and Ag(111) crystals shows a pronouncedly anisotropic emission along the 〈110〉 lattice directions which is ascribed to a momentum alignment in the anisotropic part of the collision cascade. Energy spectra taken along 〈110〉 peak at higher energies than those obtained from a random emission angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Behrisch (ed.):Sputtering by Particle Bombardment, Vols. I, II, and III (Springer, Berlin, Heidelberg 1981, 1983, 1989)

    Google Scholar 

  2. W.O. Hofer: Nucl. Instrum. Methods170, 275 (1980)

    Google Scholar 

  3. See, for example, W.O. Hofer, in [1]

    Google Scholar 

  4. A. Benninghoven, F.G. Rüdenauer, H.W. Werner:Secondary Ion Mass Spectrometry (Wiley, New York 1987)

    Google Scholar 

  5. R.F.K. Herzog, W.P. Poschenrieder, F.G. Rüdenauer, F.G. Satkiewicz: In Proc. 15th Ann. Conf. Mass Spectrom., Denver, 1967, p. 301

  6. G. Blaise, G. Slodzian: C.R. Acad. Sci. (Paris) B266, 1525 (1968)

    Google Scholar 

  7. G. Hortig, M. Müller: Z. Phys.221, 119 (1969)

    Google Scholar 

  8. G. Staudenmaier: Radiat. Eff.13, 243 (1972)

    Google Scholar 

  9. R.F.K. Herzog, W.P. Poschenrieder, F.G. Satiewicz: Radiat. Eff.18, 199 (1973)

    Google Scholar 

  10. K. Wittmaack: Phys. Lett.69A, 322 (1979)

    Google Scholar 

  11. I. Katakuse, T. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai, H. Matsuda: Int. J. Mass Spectrom. Ion Proc.67, 229 (1985)

    Google Scholar 

  12. W. Begemann, K.H. Meiwes-Broer, H.O. Lutz: Phys. Rev. Lett.56, 2248 (1986)

    Google Scholar 

  13. H. Oechsner: InThin Film and Depth Profile Analysis, ed. by H. Oechsner (Springer, Berlin, Heidelberg 1984) p. 63

    Google Scholar 

  14. R. Honig: J. Appl. Phys.29, 549 (1958)

    Google Scholar 

  15. H. Oechsner, L. Reichert: Phys. Lett.23, 90 (1966)

    Google Scholar 

  16. H. Oechsner, W. Gerhard: Phys. Lett.40A, 211 (1972); Surf. Sci.44, 480 (1974)

    Google Scholar 

  17. W. Gerhard, H. Oechsner: Z. Phys. B22, 41 (1975)

    Google Scholar 

  18. F. Bernhardt, H. Oechsner, E. Stumpe: Nucl. Instrum. Methods132, 329 (1976)

    Google Scholar 

  19. M. Szymonski, H. Overeijnder, A.E. de Vries: Radiat. Eff.36, 189 (1978)

    Google Scholar 

  20. C.B. Cooper, J.R. Woodyard: Phys. Lett.79A, 124 (1980)

    Google Scholar 

  21. R. Pedrys, R.A. Haring, A. Haring, F.W. Saris, A.E. de Vries: Phys. Lett.82A, 371 (1981)

    Google Scholar 

  22. R.A. Haring, R. Pedrys, A. Haring, A.E. de Vries: Nucl. Instrum. Methods B4, 40 (1984)

    Google Scholar 

  23. C.B. Cooper, H.A. Hamed: Surf. Sci.143, 215 (1984)

    Google Scholar 

  24. P. Fayet, J.P. Wolf, L. Wöste: Phys. Rev. B33, 6792 (1986)

    Google Scholar 

  25. R. de Jonge, T. Baller, M.G. Tenner, A.E. de Vries, K. Snowdon: Europhys. Lett.2, 449 (1986)

    Google Scholar 

  26. J. Dembowski: Doctoral Thesis, University of Kaiserslautern (1986)

  27. J. Dembowski, H. Oechsner, Y. Yamamura, M. Urbassek: Nucl. Instrum. Methods B18, 464 (1987)

    Google Scholar 

  28. W.O. Hofer, H. Gnaser: Nucl. Instrum. Methods B18, 605 (1987)

    Google Scholar 

  29. A.E. de Vries: Nucl. Instrum. Methods B27, 173 (1987)

    Google Scholar 

  30. H. Gnaser, J. Fleischhauer, W.O. Hofer: Appl. Phys. A37, 211 (1985)

    Google Scholar 

  31. F.G. Rüdenauer: Vacuum22, 609 (1972)

    Google Scholar 

  32. F. Thum, W.O. Hofer: Surf. Sci.90, 331 (1979)

    Google Scholar 

  33. H. Rodriguez-Murcia, H.E. Beske: InAdv. Mass Spectrom., Vol. 7, ed. by N.R. Daly (Heyden, London 1978) p. 593.

    Google Scholar 

  34. W. Ens, R. Beavis, K.G. Standing: Phys. Rev. Lett.50, 27 (1983)

    Google Scholar 

  35. D.M. Wood: Phys. Rev. Lett.46, 749 (1981)

    Google Scholar 

  36. W.A. Saunders, K. Clemenger, W.A. de Heer, W.D. Knight: Phys. Rev. B32, 1366 (1985)

    Google Scholar 

  37. J.L. Martins, J. Buffet, R. Car: Phys. Rev. B31, 1804 (1985)

    Google Scholar 

  38. A. Kaldor, D.M. Cox, D.J. Trevor, M.R. Zakin: Z. Phys. D3, 195 (1986)

    Google Scholar 

  39. G.P. Können, A. Tip, A.E. de Vries: Radiat. Eff.21, 269 (1974);26, 23 (1975)

    Google Scholar 

  40. W. Gerhard: Z. Phys.B 22, 31 (1975)

    Google Scholar 

  41. I.S. Bitenskii, E.S. Parilis: Sov. Phys. Tech. Phys.23, 1104 (1978)

    Google Scholar 

  42. K. Snowdon, R. Hentschke, W. Heiland, P. Hertel: Z. Phys. A318, 261 (1984)

    Google Scholar 

  43. H.M. Urbassek: Nucl. Instrum. Methods B18, 587 (1987);B31, 541 (1988)

    Google Scholar 

  44. P. Sigmund, H.M. Urbassek, D. Matragrano: Nucl. Instrum. Methods B14, 495 (1986)

    Google Scholar 

  45. D.E. Harrison, C.B. Delaplain: J. Appl. Phys.47, 2252 (1976)

    Google Scholar 

  46. N. Winograd, D.E. Harrison, B.J. Garrison: Surf. Sci.78, 467 (1978)

    Google Scholar 

  47. B.J. Garrison, N. Winograd, D.E. Harrison: J. Chem. Phys.69, 1440 (1978)

    Google Scholar 

  48. H.H. Andersen: Nucl. Instrum. Methods B18, 321 (1987)

    Google Scholar 

  49. N. Winograd, K.E. Foley, B.J. Garrison, D.E. Harrison: Phys. Lett.73A, 253 (1979)

    Google Scholar 

  50. H. Oechsner: InSecondary Ion Mass Spectrometry SIMS III, ed. by A. Benninghoven et al. (Springer, Berlin, Heidelberg 1982) p. 106

    Google Scholar 

  51. R. Kelly: Radiat. Eff.80, 273 (1984)

    Google Scholar 

  52. A.A. Radzig, B.M. Smirnov:Reference Data on Atoms, Molecules, and Ions (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  53. P. Sigmund: InInelastic Ion-Surface Collisions, ed. by N.H. Tolk et al. (Academic, New York 1977) p. 121

    Google Scholar 

  54. W. Eckstein: Nucl. Instrum. MethodsB 33, 489 (1988)

    Google Scholar 

  55. G. Holmen: Radiat. Eff.24, 7 (1975)

    Google Scholar 

  56. Kh. Zommerfel'dt, E.S. Mashkova, V.A. Molchanov: Sov. Phys. Dokl.14, 901 (1970)

    Google Scholar 

  57. H. Sommerfeldt, E.S. Mashkova, V.A. Molchanov: Phys. Lett.38A, 237 (1972)

    Google Scholar 

  58. R.J. MacDonald: Phys. Lett.29A, 256 (1969); Philos. Mag.21, 519 (1970); Radiat. Eff.3, 131 (1970)

    Google Scholar 

  59. H.E. Roosendaal: In [1], p. 219

    Google Scholar 

  60. C. Feldman, F.G. Satkiewicz: J. Electrochem. Soc.120, 1111 (1973)

    Google Scholar 

  61. R.A. Haring, H.E. Roosendaal, P.C. Zalm: Nucl. Instrum. Methods B28, 205 (1987)

    Google Scholar 

  62. K. Snowdon: Nucl. Instrum. Methods B9, 132 (1985)

    Google Scholar 

  63. G.K. Wehner: J. Appl. Phys.26, 1056 (1955); Phys. Rev.102, 690 (1956)

    Google Scholar 

  64. R.H. Silsbee: J. Appl. Phys.28, 1246 (1957)

    Google Scholar 

  65. R.G. Musket, H.P. Smith: J. Appl. Phys.39, 3579 (1968)

    Google Scholar 

  66. C. Lehmann, P. Sigmund: Phys. Stat. Solidi16, 507 (1966)

    Google Scholar 

  67. D.E. Harrison, N.S. Levy, J.P. Johnson, H.M. Effron: J. Appl. Phys.39, 3742 (1968)

    Google Scholar 

  68. Y. Yamamura, W. Takeuchi: Nucl. Instrum. Methods B29, 461 (1987)

    Google Scholar 

  69. W. Eckstein, M. Hou: Nucl. Instrum. Methods B31, 386 (1988)

    Google Scholar 

  70. M. Hautala, J. Likonen: Nucl. Instrum. Methods B33, 526 (1988)

    Google Scholar 

  71. G. Staudenmaier: Radiat. Eff.18, 181 (1973)

    Google Scholar 

  72. S.P. Holland, B.J. Garrison, N. Winograd: Phys. Rev. Lett.44, 756 (1980)

    Google Scholar 

  73. E. Bauer, S. Prigge: InSIMS III, ed. by A. Benninghoven et al. (Springer, Berlin, Heidelberg 1982) p. 201

    Google Scholar 

  74. J.J.P. Elich, H.E. Roosendaal, D. Onderdelinden: Radiat. Eff.14, 93 (1972)

    Google Scholar 

  75. D. Onderdelinden: Appl. Phys. Lett.8, 189 (1966); Can. J. Phys.46, 739 (1968)

    Google Scholar 

  76. C.H. Weijsenfeld: Thesis, University of Utrecht (1966)

  77. M.T. Robinson, A.L. Southern: J. Appl. Phys.38, 2969 (1967)

    Google Scholar 

  78. J.P. Baxter, G.A. Schick, J. Singh, P.H. Kobrin, N. Winograd: J. Vac. Sci. Technol. A4, 1218 (1986)

    Google Scholar 

  79. N. Winograd, P.H. Kobrin, G.A. Schick, J. Singh, J.P. Baxter, B.J. Garrison: Surf. Sci.176, L817 (1986)

    Google Scholar 

  80. B.J. Garrison, C.T. Reimann, N. Winograd, D.E. Harrison: Phys. Rev. B36, 3516 (1987)

    Google Scholar 

  81. M.W. Thompson: Phys. Rep.69, 335 (1981)

    Google Scholar 

  82. I. Reid, M.W. Thompson, B.W. Farmery: Philos. Mag. A42, 151 (1980)

    Google Scholar 

  83. S. Ahmad, B.W. Farmery, M.W. Thompson: Philos. Mag. A44, 1383 (1981)

    Google Scholar 

  84. R.S. Nelson, M.W. Thompson: Proc. R. Soc. (London) A259, 458 (1961)

    Google Scholar 

  85. W. Szymczak, K. Wittmaack: Nucl. Instrum. Methods194, 561 (1982)

    Google Scholar 

  86. J. Linders, H. Niedrig, M. Sternberg: Nucl. Instrum. Methods B2, 649 (1984)

    Google Scholar 

  87. M.T. Robinson: In [1], p. 73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnaser, H., Hofer, W.O. The emission of neutral clusters in sputtering. Appl. Phys. A 48, 261–271 (1989). https://doi.org/10.1007/BF00619396

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00619396

Pacs

Navigation