Transition Metal Chemistry

, Volume 4, Issue 4, pp 239–243 | Cite as

Coordination compounds derived from transition metal salts and bis(3,5-dimethylpyrazolyl)methane

  • Jan Reedijk
  • Jan Verbiest
Full Papers
  • 42 Downloads

Summary

The preparation of transition metal complexes containing the sterically hindered ligand, bis(3,5-dimethylpyrazolyl)methane (LL) is described. Compounds of formula M(LL)X2 (M = CoII, NiII or ZnII and X = Cl or Br) or M(LL)2X2 (M = MnII, FeII, CoII, NiII, CuII, ZnII or CdII and X = ClO 4 ; M = CoII, NiII, CuII or ZnII and X = NO 3 ; M = NiII or CuII and X = Cl or Br) have been isolated. In addition, an apparently trimeric Cu3(LL)4Cl6 · EtOH compound is reported. For Ni(LL)Cl2 a five-coordinated chloro-bridged dimer is found. The perchlorato compounds, M(LL)2(ClO4)2, appear to have one bidentate ClO 4 and one ionic ClO 4 group. The M(LL)2 species appears to occur either in octahedral geometry, leaving twocis-positions free, or in a tetrahedral geometry without space for other ligands, and probably also in a five-coordinate geometry with one free ligand position.

Structural conclusions are drawn from i.r., far-i.r. and ligand-field spectra, x-ray powder patterns, magnetic susceptibility data, e.s.r. spectra and conductivity data.

Keywords

Magnetic Susceptibility EtOH Metal Salt Coordination Compound Free Ligand 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    N. A. Daugherty and J. H. Swisher,Inorg. Chem., 7, 1651 (1968).Google Scholar
  2. (2).
    S. Trofimenko,Chem. Rev., 72, 497 (1972).Google Scholar
  3. (3).
    J. Reedijk,Rec. Trav. Chim., 88, 1451 (1968).Google Scholar
  4. (4).
    K. Fukushima, A. Kobayashi, T. Miyamoto and Y. Sasaki,Bull. Chem. Soc. Japan, 49, 143 (1976).Google Scholar
  5. (5).
    J. Reedijk, J. C. Jansen, H. van Koningsveld and C. G. van Kralingen,Inorg. Chem., 17, 1990 (1978).Google Scholar
  6. (6).
    C. W. Reimann, A. D. Mighell and F. A. Mauer,Acta Crystallogr., 23, 135 (1967).Google Scholar
  7. (7).
    J. Reedijk, B. A. Stork-Blaisse and G. C. Verschoor,Inorg. Chem., 10, 2594 (1971).Google Scholar
  8. (8).
    S. Trofimenko,J. Am. Chem. Soc., 92, 5118 (1970).Google Scholar
  9. (9).
    S. Trofimenko,J. Am. Chem. Soc., 88, 1842 (1966).Google Scholar
  10. (10).
    S. Trofimenko,Acc. Chem. Res., 4, 17 (1971).Google Scholar
  11. (11).
    F. A. Cotton, C. A. Murillo and B. R. Stults,Inorg. Chim. Acta, 22, 75 (1977).Google Scholar
  12. (12).
    J. Reedijk and J. Verbiest,Transition Met. Chem., 3, 51 (1978).Google Scholar
  13. (13).
    A. B. P. Lever,J. Chem. Educ., 45, 711 (1968).Google Scholar
  14. (14).
    M. A. Guichelaar, J. A. M. van Hest and J. Reedijk,Delft Progr. Rep., 2, 51 (1976).Google Scholar
  15. (15).
    J. C. Jansen, H. van Koningsveld, J. A. C. van Ooyen and J. Reedijk, to be published.Google Scholar
  16. (16).
    E. J. Pleau and G. F. Kokoszka,J. Chem. Soc. Faraday Trans. II, 69, 355 (1973).Google Scholar
  17. (17).
    A. B. P. Lever,Inorganic Electronic Spectroscopy, Elsevier, New York, 1968.Google Scholar
  18. (18).
    B. J. Hathaway and D. E. Billing,Coord. Chem. Rev., 5, 143 (1970).Google Scholar
  19. (19).
    W. J. Geary,Coord. Chem. Rev., 7, 81 (1971).Google Scholar
  20. (20).
    K. Nakamoto,Infrared and Roman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1978.Google Scholar
  21. (21).
    M. R. Rosenthal,J. Chem. Educ., 50, 331 (1973).Google Scholar
  22. (22).
    A. B. P. Lever, E. Mantovani and B. S. Ramaswamy,Can. J. Chem., Chem., 49, 1957 (1971).Google Scholar
  23. (23).
    S. F. Pavkovic and D. W. Meek,Inorg. Chem., 4, 1091 (1965).Google Scholar
  24. (24).
    A. E. Wickenden and R. A. Krause,Inorg. Chem., 4, 404 (1965).Google Scholar

Copyright information

© Verlag Chemie, GmbH 1979

Authors and Affiliations

  • Jan Reedijk
    • 1
  • Jan Verbiest
    • 1
  1. 1.Department of ChemistryDelft University of TechnologyDelftThe Netherlands

Personalised recommendations