Skip to main content
Log in

Metal transition complexes of tridentate Schiff base ligands derived from 2-hydrazinopyridine: synthesis, spectroscopic characterization and X-ray structures

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Mononuclear complexes of 1-(pyridin-2-ylmethylidene)-2-(pyridin-2-yl)hydrazine (HL1) and 1-(pyridin-2-yl)-2-(1-(pyridin-2-yl)ethylidene)hydrazine (HL2), [Mn(HL1)(Cl2)(H2O)] (1), [Zn(HL1)(CH3COO)2]·(H2O)3 (2), [Mn(HL2)2]·(ClO4)2 (3) and [Cu(HL2)(NO3)2(H2O)] (4) were synthesized and characterized by physicochemical and spectroscopic methods and X-ray structure determination. The mononuclear compounds 1, 2 and 4 contain one ligand molecule per metal atom while the manganese (II) atom in compound 3 is coordinated to two ligand molecules. Both ligands coordinated to the transition metal center in a tridentate fashion through two Npyridyl atoms and one Nimino atom. The chloride and acetate anions coordinate in monodentate manner, respectively, in complex 1 and in complex 2. In complex 3, the perchlorate groups remain uncoordinated. In complex 4, the nitrate anions act in unidentate fashion. The molar conductance value indicates that the complexes obtained from HL1 are non-electrolytes while those obtained from HL2 are 2:1 electrolytes in DMF solutions. The X-ray structures reveal octahedral geometry for complexes 1, 3, 4 and trigonal bipyramidal environment for 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vigato PA, Tamburini S (2004) Coord Chem Rev 248:1717–2128

    Article  CAS  Google Scholar 

  2. Guricová M, Pižl M, Smékal Z, Nádherný L, Čejka J, Eigner V, Hoskovcová I (2018) Inorg Chim Acta 477:248–256

    Article  CAS  Google Scholar 

  3. Cao W, Liu Y, Zhang T, Jia J (2018) Polyhedron 147:62–68

    Article  CAS  Google Scholar 

  4. Zaltariov M-F, Cazacu M, Avadanei M, Shova S, Balan M, Vornicu N, Vlad A, Dobrov A, Varganici C-D (2015) Polyhedron 100:121–131

    Article  CAS  Google Scholar 

  5. Shabbir M, Akhter Z, Ashraf AR, Ismail H, Habib A, Mirza B (2017) J Mol Struct 1149:720–726

    Article  CAS  Google Scholar 

  6. Upadhyay KK, Kumar A, Upadhyay S, Mishra PC (2008) J Mol Struct 873:5–16

    Article  CAS  Google Scholar 

  7. Yahsi Y, Kara H (2014) Spectrochim Acta A Mol Biomol Spectrosc 127:25–31

    Article  CAS  PubMed  Google Scholar 

  8. Singh DP, Allam BK, Singh KN, Singh VP (2015) J Mol Catal Chem 398:158–163

    Article  CAS  Google Scholar 

  9. Valentová J, Varényi S, Herich P, Baran P, Bilková A, Kožíšek J, Habala L (2018) Inorg Chim Acta 480:16–26

    Article  CAS  Google Scholar 

  10. Iftikhar B, Javed K, Khan MSU, Akhter Z, Mirza B, Mckee V (2018) J Mol Struct 1155:337–348

    Article  CAS  Google Scholar 

  11. Mahmoud WH, Mahmoud NF, Mohamed GG (2017) J Organomet Chem 848:288–301

    Article  CAS  Google Scholar 

  12. Fouda MFR, Abd-Elzaher MM, Abdelsamaia RA, Labib AA (2007) Appl Organomet Chem 21:613–625

    Article  CAS  Google Scholar 

  13. Ceyhan G, Köse M, McKee V, Uruş S, Gölcü A, Tümer M (2012) Spectrochim Acta A Mol Biomol Spectrosc 95:382–398

    Article  CAS  PubMed  Google Scholar 

  14. Neary MC, Parkin G (2016) Polyhedron 116:189–196

    Article  CAS  Google Scholar 

  15. Golbedaghi R, Fausto R, Salehzadeh S, Tofani M, Safaraabadi S (2018) Inorg Chim Acta 480:27–32

    Article  CAS  Google Scholar 

  16. Abou-Hussein AAA, Linert W (2012) Spectrochim Acta A Mol Biomol Spectrosc 95:596–609

    Article  CAS  PubMed  Google Scholar 

  17. Egekenze RN, Gultneh Y, Butcher R (2018) Inorg Chim Acta 478:232–242

    Article  CAS  Google Scholar 

  18. Carmona-Vargas CC, Aristizábal SL, Belalcázar MI, D’Vries RF, Chaur MN (2019) Inorg Chim Acta 487:275–280

    Article  CAS  Google Scholar 

  19. Ly HN, Brook DJR, Oliverio O (2011) Inorg Chim Acta 378:115–120

    Article  CAS  Google Scholar 

  20. Lions F, Dance IG, Lewis J (1967) J Chem Soc A Inorg Phys Theor. https://doi.org/10.1039/J19670000565

    Article  Google Scholar 

  21. Vecchio-Sadus AM (1995) Transit Met Chem 20:38–45

    CAS  Google Scholar 

  22. Chaur MN, Collado D, Lehn J-M (2011) Chem Eur J 17:248–258

    Article  CAS  PubMed  Google Scholar 

  23. Kosobokov MD, Xue T, Vicic DA (2018) Polyhedron 155:366–369

    Article  CAS  Google Scholar 

  24. Dunn JG, Edwards DA (1971) J Chem Soc A Inorg Phys Theor. https://doi.org/10.1039/J19710000988

    Article  Google Scholar 

  25. Ndiaye-Gueye M, Dieng M, Thiam IE, Sow MM, Gueye-Sylla R, Barry AH, Gaye M, Retailleau P (2017) Rev Roum Chim 62:35–41

    Google Scholar 

  26. Ndiaye-Gueye M, Dieng M, Thiam EI, Lo D, Barry AH, Gaye M, Retailleau P (2017) South Afr J Chem 70:8–15

    Google Scholar 

  27. Gueye NDM, Moussa D, Thiam EI, Barry AH, Gaye M, Retailleau P (2017) Acta Crystallogr E 73:1121–1124

    Article  CAS  Google Scholar 

  28. Sarr M, Diop M, Thiam EI, Barry AH, Gaye M, Retailleau P (2018) Acta Crystallogr E 74:450–453

    Article  CAS  Google Scholar 

  29. CrysAlisPro 11713934b Rigaku Oxford diffraction 2017

  30. Sheldrick GM (2015) Acta Crystallogr A 71:3–8

    Article  CAS  Google Scholar 

  31. Sheldrick GM (2015) Acta Crystallogr C 71:3–8

    Article  CAS  Google Scholar 

  32. Farrugia LJ (1997) J Appl Crystallogr 30:565

    Article  CAS  Google Scholar 

  33. Geary WJ (1971) Coord Chem Rev 7:81–122

    Article  CAS  Google Scholar 

  34. Chioma F, Ekennia AC, Ibeji CU, Okafor SN, Onwudiwe DC, Osowole AA, Ujam OT (2018) J Mol Struct 1163:455–464

    Article  CAS  Google Scholar 

  35. Puchoňová M, Matejová S, Jorík V, Šalitroš I, Švorc Ľ, Mazúr M, Moncoľ J, Valigura D (2018) Polyhedron 151:152–159

    Article  CAS  Google Scholar 

  36. Deacon GB (1980) Phillips. Coord Chem Rev 33:227–250

    Article  CAS  Google Scholar 

  37. Deacon GB, Huber F, Phillips RJ (1985) Inorg Chim Acta 104:41–45

    Article  CAS  Google Scholar 

  38. Sangeetha S, Murali M (2015) Inorg Chem Commun 59:46–49

    Article  CAS  Google Scholar 

  39. Pratihar JL, Mandal P, Brandão P, Mal D, Felix V (2018) Inorg Chim Acta 479:221–228

    Article  CAS  Google Scholar 

  40. Diouf O, Sall DG, Gaye ML, Sall AS (2007) Comptes Rendus Chim 10:473–481

    Article  CAS  Google Scholar 

  41. Sadhu MH, Kumar SB, Saini JK, Purani SS, Khanna TR (2017) Inorg Chim Acta 466:219–227

    Article  CAS  Google Scholar 

  42. Ha K (2010) Acta Crystallogr E 66:m262

    Article  CAS  Google Scholar 

  43. Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC (1984) J Chem Soc Dalton Trans. https://doi.org/10.1039/DT9840001349

    Article  Google Scholar 

  44. Konno T, Tokuda K, Sakurai J, Okamoto K (2000) Bull Chem Soc Jpn 73:2767–2773

    Article  CAS  Google Scholar 

  45. Coropceanu EB, Croitor L, Siminel AV, Fonari MS (2014) Polyhedron 75:73–80

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Gaye.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diop, A., Sarr, M., Diop, M. et al. Metal transition complexes of tridentate Schiff base ligands derived from 2-hydrazinopyridine: synthesis, spectroscopic characterization and X-ray structures. Transit Met Chem 44, 415–423 (2019). https://doi.org/10.1007/s11243-019-00317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00317-3

Navigation