Skip to main content
Log in

Interneurons descending from the cricket cephalic ganglia that discharge in the pattern of two motor rhythms

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

  1. 1.

    When male field crickets (Gryllus campestris L.) sing, abdominal respiration is usually synchronized with the chirps of the calling song. These experiments were designed to find a neuronal correlate of this synchronization.

    Animals with freely moving wings and abdomen are caused to produce normal song by brain lesions, during which the activity of single fibers in the cervical connectives is recorded extracellularly together with the myograms of the wing muscles and the expiratory abdominal flank muscles.

  2. 2.

    In each of three animals a descending neuronal spike pattern was found (I, II, III, respectively) in which bursts of impulses alternate with the chirps and the corresponding abdominal ventilatory activity (AVA). In silent males the bursts alternate with the AVAs and other abdominal movements.

  3. 3.

    The beginning of the neuronal burst is correlated with the end of the preceding chirp, no matter how long it is, and the end is correlated with the onset of the following chirp. The relationship to the chirp-coupled AVA is less clear-cut.

  4. 4.

    The muscle potentials in the chirp-coupled AVA are grouped so as to resemble the syllable pattern (animal I). Between these groups increasing numbers of neuronal impulses appear toward the end of the chirp. When the chirp is shifted with respect to the AVA, the spikes continue to follow the syllable rhythm.

  5. 5.

    A relation between Pattern I and the AVA becomes evident in the case of AVAs lasting through two chirps. The neuron fires more rarely during such AVAs than it does between AVAs coupled to a single chirp.

  6. 6.

    In silent males the neuronal burst both ends and begins later with respect to the AVA, and the discharge rate is lower.

  7. 7.

    After transection of all nervous connections to thorax and abdomen Patterns I and II are irreversibly altered. That is, the correlation of the neuronal pattern with the motor patterns must require ascending inputs from these regions. During singing these inputs would have to be correlated primarily with the rhythm of stridulation, whereas in the silent phase they would be correlated with the activity rhythm of the abdominal dorsoventral muscles alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AVA :

abdominal ventilatory activity

References

  • Bacon JP, Möhl B (1979) Activity of an identified wind interneurone in a flying locust. Nature 278:638–640

    Google Scholar 

  • Bentley D (1969a) Intracellular activity in cricket neurons during generations of behaviour patterns. J Insect Physiol 15:677–699

    Google Scholar 

  • Bentley D (1969b) Intracellular activity in cricket neurons during generation of song patterns. Z Vergl Physiol 62:267–283

    Google Scholar 

  • Bentley D (1977) Control of cricket song patterns by descending interneurons. J Comp Physiol 116:19–38

    Google Scholar 

  • Burrows M (1975a) Coordinating interneurons of the locust which convey two patterns of motor commands: their connexions with flight motoneurons. J Exp Biol 63:717–733

    Google Scholar 

  • Burrows M (1975b) Coordinating interneurons of the locust which convey two patterns of motor commands: their connexions with ventilatory motoneurons. J Exp Biol 63:735–753

    Google Scholar 

  • Elsner N (1969) Kommandofasern im Zentralnervensystem der HeuschreckeGastrimargus africanus (Oedipodinae). Zool Anz (Suppl) 33:465–471

    Google Scholar 

  • Elsner N, Popov AV (1978) Neuroethology of acoustic communication. Adv Insect Physiol 13:229–335

    Google Scholar 

  • Gerstein GL, Kiang NYS (1960) An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys J 1:15–28

    Google Scholar 

  • Hedwig B, Elsner N (1980) A neuroethological analysis of sound production in the acridid grasshopper,Omocestus viridulus. Adv Physiol Sci 23:495–514

    Google Scholar 

  • Huber F (1955) Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen vonGryllus campestris L. Z Tierpsychol 12:12–48

    Google Scholar 

  • Huber F (1960a) Experimentelle Untersuchungen zur nervösen Atmungsregulation der Orthopteren (Saltatoria: Gryllidae). Z Vergl Physiol 43:359–391

    Google Scholar 

  • Huber F (1960b) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und Lauterzeugung der Grillen. Z Vergl Physiol 44:60–132

    Google Scholar 

  • Hustert R (1974) Morphologie und Atmungsbewegung des 5. Abdominalsegmentes vonLocusta migratoria migratorioides. Zool Jahrb Abt Allg Zool Physiol Tiere 78:157–174

    Google Scholar 

  • Hustert R (1975) Neuromuscular coordination and proprioceptive control of rhythmical abdominal ventilation in intactLocusta migratoria migratorioides. J Comp Physiol 97:159–179

    Google Scholar 

  • Kien J (1980) Mechanisms of motor control by plurisegmental interneurons in locusts. J Comp Physiol 140:303–320

    Google Scholar 

  • Klapp G (1974) Elektrophysiologische Untersuchungen zur Kontrolle der Lauterzeugung und der Atmung von Grillen. Diplom Thesis, Technische Hochschule Darmstadt

  • Kutsch W (1969) Neuromuskuläre Aktivität bei verschiedenen Verhaltensweisen von drei Grillenarten. Z Vergl Physiol 63:335–378

    Google Scholar 

  • Kutsch W, Otto D (1972) Evidence for spontaneous song production independent of head ganglia inGryllus campestris L. J Comp Physiol 81:115–119

    Google Scholar 

  • Miller PL (1974) Respiration — aerial gas transport. In: Rockstein M (ed) Physiology of insecta, vol 6. Academic Press, New York, pp 345–402

    Google Scholar 

  • O'Shea M, Rowell CHF (1977) Complex neural integration and identified interneurons in the locust brain. In: Hoyle G (ed) Identified neurons and behavior of arthropods. Plenum Press, New York London, pp 307–328

    Google Scholar 

  • Otto D (1967) Untersuchungen zur nervösen Kontrolle des Grillengesanges. Zool Anz (Suppl) 31:585–592

    Google Scholar 

  • Otto D (1969) Hirnreizinduzierte komplexe Verhaltensfolgen bei Grillen. Zool Anz (Suppl) 33:472–477

    Google Scholar 

  • Otto D (1971) Untersuchungen zur zentralnervösen Kontrolle der Lauterzeugung von Grillen. Z Vergl Physiol 74:227–271

    Google Scholar 

  • Otto D (1978) Änderungen von Gesangsparametern bei der Grille (Gryllus campestris L.) nach Injektion von Pharmaka ins Gehirn. Verh Dtsch Zool Ges 1978:245

    Google Scholar 

  • Otto D, Campan R (1978) Descending interneurons from cricket subesophageal ganglion. Naturwissenschaften 65:491

    Google Scholar 

  • Rowell CHF (1963) A method for chronically implanting stimulating electrodes in the brain of locusts, and some results of stimulation. J Exp Biol 40:271–284

    Google Scholar 

  • Robertson RM, Moulins M (1981) Oscillatory command input to the motor pattern generators of the crustacean stomatogastric ganglion. J Comp Physiol 143:453–463

    Google Scholar 

  • Selverston AI, Miller JP (1980) Mechanisms underlying pattern generation in the lobster stomatogastric ganglion. Adv Physiol Sci 23:345–368

    Google Scholar 

  • Simmons P (1981) Ocellar excitation of the DCMD: An identified locust interneurone. J Exp Biol 91:355–359

    Google Scholar 

  • Vowles DM (1964) Models and the insect brain. In: Reiss RF (ed) Neural theory and modelling. Stanford University Press, Stanford, pp 377–399

    Google Scholar 

  • Wadepuhl M (1980) Kontrolle des akustischen Verhaltens einheimischer Feldheuschrecken (Gomphocerus rufus L.) durch das Gehirn. Doctoral Dissertation, Universität München

  • Weber T (1978) Vergleich der Lockgesänge von drei Grillenarten im Hinblick auf artspezifisches Erkennen in der Phonotaxis der Weibchen. Verh Dtsch Zool Ges 1978:176

    Google Scholar 

  • Wilson DM, Wyman JR (1965) Motor input patterns during random and rhythmic stimulation of locust thoracic ganglia. Biophys J 5:121–143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft within the SPP “Neurale Mechanismen des Verhaltens” (Ot 62/4)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otto, D., Weber, T. Interneurons descending from the cricket cephalic ganglia that discharge in the pattern of two motor rhythms. J. Comp. Physiol. 148, 209–219 (1982). https://doi.org/10.1007/BF00619127

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00619127

Keywords

Navigation