Skip to main content
Log in

Methyl methylphenylphosphinate, MePh(MeO)PO complexes of the first row transition metals

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Methyl methylphenylphosphinate (L) complexes with 3d metal perchlorates were synthesized by interaction of L and metal salt solutions in triethyl orthoformate (6∶1 molar ratio) and characterized by means of spectral, magnetic and conductance studies. In most cases (Mn+ = Cr3+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+), complexes involving 4∶1 L: metal ratios, similar to those obtained with bulky triorganophosphine oxides and neutral phosphonate or phosphate esters, were formed. These complexes contain exclusively terminal L groups and were characterized as monomeric of the types [CrL4(OClO3)2](ClO4), [ML4(OH2)](ClO4)2 (M = Mn or Ni), [ML4(OClO3)](ClO4) (M = Co or Zn) and [CuL4](ClO4)2. In contrast, Fe2+ and Fe3+ perchlorates formed, rather unexpectedly, complexes involving 2∶1 L: Fe ratios. These compounds appear to be binuclear and of the type [(O3ClO)(H2O)2LFeL2FeL(OH2)2(OClO3)](ClO4)n (n=2 for Fe2+; n=4 for Fe3+), containing both terminal and bridging coordinated L ligands. The bridging L groups in the iron complexes seem to be exclusively coordinated through the P=O oxygen, which acts as a bridging group between two adjacent Fe2+ or Fe3+ions, rather than functioning as bidentate bridging O,O-ligands, with both the P=O and methoxy oxygens involved in coordination. Spectral evidence suggests that L is a weaker ligand than triorganophosphine oxides and a stronger ligand than neutral phosphonate and phosphate esters, as anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Mikulski, J. Unruh, L. L. Pytlewski and N. M. Karayannis,Abstr. INOR 225 173rd National Meeting, Am. Chem. Soc., New Orleans, La., March 20–25, 1977.

    Google Scholar 

  2. N. M. Karayannis, C. M. Mikulski and L. L. Pytlewski,Inorg. Chim. Acta Rev., 5, 69 (1971).

    Google Scholar 

  3. M. W. G. de Bolster and W. L. Groeneveld,Topics Phosphorus Chem., 8, 273 (1976).

    Google Scholar 

  4. K. Issleib and A. Brack,Z. anorg. allg. Chem., 277, 258 (1954); K. Issleib, A. Tzschach and H. O. Fröhlich,ibid., 298, 164 (1958); K. Issleib and B. Mitscherling,ibid., 304, 73 (1960).

    Google Scholar 

  5. J. C. Sheldon and S. Y. Tyree,J. Am. Chem. Soc., 80, 4775 (1958).

    Google Scholar 

  6. I. Lindqvist and G. Olofsson,Acta Chem. Scand., 13, 1753 (1959).

    Google Scholar 

  7. F. A. Cotton and E. Bannister,J. Chem. Soc., 1873 (1960); E. Bannister and F. A. Cotton,ibid., 1878, 2276 (1960); F. A. Cotton, R. D. Barnes and E. Bannister,ibid., 2199 (1960); D. M. L. Goodgame and F. A. Cotton,ibid., 2898, 3735 (1961).

  8. F. A. Cotton, D. M. L. Goodgame and R. H. Soderberg,Inorg. Chem., 2, 1162 (1963); F. A. Cotton and R. H. Soderberg,J. Am. Chem. Soc., 85, 2402 (1963).

    Google Scholar 

  9. M. J. Frazer, W. Gerrard and R. Twaits,J. Inorg. Nucl. Chem., 25, 637 (1963).

    Google Scholar 

  10. A. M. Brodie, S. H. Hunter, G. A. Rodley and C. J. Wilkins,Inorg. Chim. Acta, 2, 195 (1968);J. Chem. Soc. A., 2039 (1968); A. M. Brodie, J. E. Douglas and C. J. Wilkins,ibid., 1931 (1969).

    Google Scholar 

  11. S. H. Hunter, R. S. Nyholm and G. A. Rodley,Inorg. Chim. Acta, 3, 631 (1969).

    Google Scholar 

  12. D. D. Schmidt and J. T. Yoke,Inorg. Chem., 9, 1176 (1970).

    Google Scholar 

  13. S. A. Cotton and J. F. Gibson,J. Chem. Soc. A, 859 (1971).

    Google Scholar 

  14. N. M. Karayannis, C. M. Mikulski, L. L. Pytlewski and M.M. Labes,Inorg. Chem., 9, 582 (1970);Inorg. Chim. Acta, 10, 97 (1974).

    Google Scholar 

  15. N. M. Karayannis, C. M. Mikulski, M. J. Strocko, L. L. Pytlewski and M. M. Labes,J. Inorg. Nucl. Chem., 32, 2629 (1970).

    Google Scholar 

  16. N. M. Karayannis, C. M. Mikulski, M. J. Strocko, L. L. Pytlewski and M. M. Labes,J. Inorg. Nucl. Chem., 33, 2691 (1971);Inorg. Chim. Acta, 8, 91 (1974).

    Google Scholar 

  17. F. Mani.Inorg. Nucl. Chem. Lett., 7, 447 (1971).

    Google Scholar 

  18. M. W. G. de Bolster and W. L. Groeneveld,Recl. Trav. Chim., 90, 1153 (1971); M. W. G. de Bolster, I. E. Kortram and W. L. Groeneveld,J. Inorg. Nucl. Chem., 34, 575 (1972).

    Google Scholar 

  19. H. A. Tayim, A. Bouldoukian and F. Awad,J. Inorg. Nucl. Chem., 32, 3799 (1970); S. K. Thabet, H. A. Tayim and M. U. Karkawani,Inorg. Nucl. Chem. Lett., 8, 211 (1972).

    Google Scholar 

  20. R. O. Inlow and M. D. Joesten,J. Inorg. Nucl. Chem., 37, 2353 (1975); G. Vicentini, J. C. Prado, R. Najjar and A. B. Nascimento,Inorg. Nucl. Chem. Lett., 13, 495 (1977).

    Google Scholar 

  21. J. R. Ferraro, C. Cristallini and I. Fox,J. Inorg. Nucl. Chem., 29, 139 (1967).

    Google Scholar 

  22. L. S. Frankel,Inorg. Chem., 8, 1784 (1969); J. Crea, R. DiGiusto, S. F. Lincoln and E. H. Williams,ibid., 16, 2825 (1977); L. Rodehüser, P. R. Rubini and J.-J. Delpuech,ibid., 16, 2837 (1977).

    Google Scholar 

  23. N. M. Karayannis, C. Owens, L. L. Pytlewski and M. M. Labes,J. Inorg. Nucl. Chem., 31, 2059, 2767 (1969);32, 83 (1970).

    Google Scholar 

  24. N. M. Karayannis, E. E. Bradshaw, L. L. Pytlewski and M. M. Labes,J. Inorg. Nucl. Chem., 32, 1079 (1970).

    Google Scholar 

  25. N. M. Karayannis, C. M. Mikulski, M. J. Strocko, L. L. Pytlewski and M. M. Labes,Inorg. Chim. Acta, 4, 557 (1970).

    Google Scholar 

  26. C. Owens, N. M. Karayannis, L. L. Pytlewski and M. M. Labes,J. Phys. Chem., 75, 637 (1971).

    Google Scholar 

  27. P. Graham and M. Joesten,J. Inorg. Nucl. Chem., 32, 531 (1970).

    Google Scholar 

  28. J. R. McRae and D. G. Karraker,J. Inorg. Nucl. Chem., 33, 479 (1971).

    Google Scholar 

  29. B. Kautzner and P. C. Wailes.Aust. J. Chem., 22, 2295 (1969).

    Google Scholar 

  30. G. P. Nikitina and M. F. Pushlenkov,Radiokhimiya, 5, 456 (1963).

    Google Scholar 

  31. L. L. Burger,J. Phys. Chem., 62, 590 (1958).

    Google Scholar 

  32. A. V. Nikolaev and S. M. Shubina,Zh. Neorg. Khim., 6, 799 (1961); A. V. Nikolaev, L. N. Mazalov, E. A. Gal'tsova, Y. A. Dyadin, A. P. Zeif, N. I. Yakovleva and V. V. Murakhtanov,Dokl. Akad. Nauk SSSR, 181, 119 (1968).

    Google Scholar 

  33. S. M. Sinitsyna and N. M. Sinitsyn,Zh. Neorg. Khim., 10, 923 (1965).

    Google Scholar 

  34. K. D. Berlin and R. U. Pagilagan,Chem. Commun., 687 (1966).

  35. B. M. Cohen, A. R. Cullingworth and J. D. Smith,J. Chem. Soc. A, 2193 (1969).

    Google Scholar 

  36. S. P. Khranenko, L. K. Chuchalin, A. I. Rezhvukhin and Z. I. Mironova,Izv. Sib. Otd. Akad. Nauk, 53 (1973);Chem. Abstr., 78, 131544 (1973).

  37. A. N. Pudovik, A. A. Muratova, I. Ya. Kuramshin, E. G. Yarkova and L. I. Vinogradov,Zh. Obshch. Khim., 42, 979 (1972).

    Google Scholar 

  38. P. W. N. M. van Leeuwen and W. L. Groeneveld,Inorg. Nucl. Chem. Lett., 3, 145 (1967).

    Google Scholar 

  39. C. M. Mikulski, N. M. Karayannis and L. L. Pytlewski,Abstr. INOR 81 163rd National Meeting, Am. Chem. Soc., Boston, Mass., April 9–14, 1972;Inorg. Chim. Acta., in press.

    Google Scholar 

  40. C. M. Mikulski, J. S. Skryantz, N. M. Karayannis, L. L. Pytlewski and L. S. Gelfand,Inorg. Chim. Acta, 27, 69 (1978).

    Google Scholar 

  41. L. C. Thomas and R. A. Chittenden,Spectrochim. Acta, 20, 467, 489 (1964);21, 1905 (1965);26A, 781 (1970).

    Google Scholar 

  42. O. A. Osipov, V. I. Gaivoronskii and A. A. Shvets,Zh. Neorg. Khim., 8, 2190 (1963).

    Google Scholar 

  43. B. J. Hathaway and A. E. Underbill,J. Chem. Soc., 3091 (1961); B. J. Hathaway, D. G. Holah and M. Hudson,ibid., 4586 (1963).

  44. A. E. Wickenden and R. A. Krause,Inorg. Chem., 4, 404 (1965); S. F. Pavkovic and D. W. Meek,ibid., 4, 1091 (1965); M. E. Farago, J. M. James and V. C. G. Trew,J. Chem. Soc. A, 820 (1967).

    Google Scholar 

  45. I. Nakagawa and T. Shimanouchi,Spectrochim. Acta, 20, 429 (1964).

    Google Scholar 

  46. J. R. Ferraro, D. F. Peppard and G. W. Mason,Spectrochim. Acta, 19, 811 (1963).

    Google Scholar 

  47. K. A. Jensen and P. A. Nielsen,Acta Chem. Scand., 17, 1875 (1963); E. I. Matrosov, K. A. Andrianov, I. Ya. Manevich and Yu. A. Buslaev,Izv. Akad. Nauk SSSR, Neorg. Mat., 1, 464 (1965).

    Google Scholar 

  48. J. P. Clark, V. M. Langford and C. J. Wilkins,J. Chem. Soc. A, 792 (1967); G. B. Deacon and J. H. S. Green,Spectrochim. Acta, 24A, 845 (1968).

    Google Scholar 

  49. D. M. L. Goodgame, M. Goodgame and P. J. Hayward,J. Chem. Soc. A, 1352 (1970).

    Google Scholar 

  50. J. R. Ferraro and A. Walker,J. Chem. Phys., 42, 1273, 1278 (1965).

    Google Scholar 

  51. A. N. Speca, L. S. Gelfand, L. L. Pytlewski, C. Owens and N.M. Karayannis,Inorg. Chem., 15, 1493 (1976).

    Google Scholar 

  52. S. Nomura and R. Hara,Anal. Chim. Acta, 25, 212 (1961).

    Google Scholar 

  53. T. A. Mastryukova and M. I. Kabachnik,J. Org. Chem., 36, 1201 (1971).

    Google Scholar 

  54. C. M. Mikulski, N. M. Karayannis and L. L. Pytlewski,J. Inorg. Nucl. Chem., 36, 971 (1974).

    Google Scholar 

  55. R. Whyman and W. E. Hatfield,Inorg. Chem., 6, 1859 (1967).

    Google Scholar 

  56. C.-I. Bränden,Ark. Kemi, 22, 488 (1964); M. G. King and G. P. McQuillan,J. Chem. Soc. A, 898 (1967).

    Google Scholar 

  57. J. H. Binks, L. S. Dent Glasser, G. J. Dorward, R. A. Howle and G. P. McQuillan,Inorg. Chim. Acta, 22, L17 (1977).

    Google Scholar 

  58. Y. S. Ng, G. A. Rodley and W. T. Robinson,Acta Crystallogr., B33, 931 (1977).

    Google Scholar 

  59. W. J. Geary,Coord. Chem. Rev., 7, 81 (1971).

    Google Scholar 

  60. N. M. Karayannis, L. L. Pytlewski and M. M. Labes,Inorg. Chim. Acta, 3, 415 (1969).

    Google Scholar 

  61. B. N. Figgis and J. Lewis,Progress Inorg. Chem., 6, 37 (1964).

    Google Scholar 

  62. W. Byers, A. B. P. Lever and R. V. Parish,Inorg. Chem., 7, 1835 (1968).

    Google Scholar 

  63. P. R. Murthy and C. C. Patel,Can. J. Chem., 42, 856 (1964); V: Krishnan and C. C. Patel,ibid., 43, 2685 (1965);44, 972 (1966).

    Google Scholar 

  64. C. M. Mikulski, L. S. Gelfand, L. L. Pytlewski, J. S. Skryantz and N. M. Karayannis,Inorg. Chim. Acta, 21, 9 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikulski, C.M., Unruh, J., Pytlewski, L.L. et al. Methyl methylphenylphosphinate, MePh(MeO)PO complexes of the first row transition metals. Transition Met Chem 4, 98–103 (1979). https://doi.org/10.1007/BF00618833

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00618833

Keywords

Navigation