Skip to main content
Log in

Selectively dopedn-AlxGa1−xAs/GaAs heterostructures with high-mobility two-dimensional electron gas for field effect transistors

Part II. Hot electron effects

  • Contributed Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The transport properties of warm and hot electrons in selectively dopedn-Al x Ga1−x As/GaAs heterostructures created by electric fields up to 500 V/cm were studied by Hall effect, conductivity, and Shubnikov-de Haas measurements at lattice temperatures from 4.2 to 300 K. Hall measurements revealed a substantial decrease of electron mobility and also of sheet electron concentration at 77 K with enhanced electric field. The accelerated 2D electrons are partly scattered into the low-mobility first excited (E 1) subband, and they are partly trapped in immobile states located in the AlxGa1−xAs near the interface. Consequently, two differentv(E) characteristics were obtained at 77 K. The 2D electrons populating only the lowest (E 0) subband exhibit a velocity of v∼-2×107 cm/s at 500 V/cm, while the averaged velocity due to all electrons reaches a value of v∼-1.5×107cm/s at 500 V/cm. The analysis of the Shubnikov-de Haas oscillations and Fast Fourier transformation of the data manifested that the 2D electrons are very rapidly accelerated at 4.2 K and achieve electron temperatures much higher than the lattice temperature at electric fields as low as 1 V/cm. The major cooling process for these electrons is scattering into the low-mobilityE 1 subband.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Dingle, H.L. Störmer, A.C. Gossard, W. Wiegmann: Appl. Phys. Lett.33, 665 (1978)

    Google Scholar 

  2. G. Abstreiter, K. Ploog: Phys. Rev. Lett.42, 1308 (1979)

    Google Scholar 

  3. H.L. Störmer, A. Pinczuk, A.C. Gossard, W. Wiegmann: Appl. Phys. Lett.38, 691 (1981)

    Google Scholar 

  4. S. Hiyamizu, T. Mimura: J. Cryst. Growth56, 455 (1982)

    Google Scholar 

  5. D. Delagebeaudeuf, N.T. Linh: IEEE Trans. ED-29, 955 (1982)

    Google Scholar 

  6. M. Abe, T. Mimura, N. Yokoyama, H. Inhikawa: IEEE Trans. MTT-30, 992 (1982)

    Google Scholar 

  7. E.F. Schubert, K. Ploog, H. Dämbkes, K. Heime: Appl. Phys. A33, 63 (1984)

    Google Scholar 

  8. T.J. Drummond, M. Keever, W. Kopp, H. Morkoc, K. Hess, B.G. Streetman, A.Y. Cho: Electron. Lett.17, 545 (1981)

    Google Scholar 

  9. M. Keever, W. Kopp, T.J. Drummond, H. Morkoc, K. Hess: Jpn. J. Appl. Phys.21, 1489 (1982)

    Google Scholar 

  10. M. Inoue, S. Hiyamizu, M. Inayama, Y. Iunishi: Jpn. J. Appl. Phys.22, Suppl. 22–1, 357 (1983)

    Google Scholar 

  11. H.J. Nussbaumer:Fast Fourier Transform and Convolution Algorithm, 2nd ed., Springer Ser. Inform. Sci.2 (Springer, Berlin, Heidelberg, New York 1982)

    Google Scholar 

  12. The two transistor models are described for example in S.M. Sze:Physics of Semiconductor Devices, 2nd ed. (Wiley, New York 1981) p. 312

    Google Scholar 

  13. M. Inoue, H. Hida, M. Inayama, Y. Iunishi, K. Naubu, S. Hiyamizu: Physica117B and118B, 720 (1983)

    Google Scholar 

  14. S. Mori, T. Ando: J. Phys. Soc. Jpn.48, 865 (1980)

    Google Scholar 

  15. B.K. Ridley: J. Phys. C15, 5899 (1982)

    Google Scholar 

  16. J.G. Ruch, G.S. Kino: Appl. Phys. Lett.10, 40 (1967)

    Google Scholar 

  17. K. Hess, H. Morkoc, H. Shichijo, B.G. Streetman: Appl. Phys. Lett35, 469 (1979)

    Google Scholar 

  18. G. Bauer, H. Kahlert: Phys. Rev. B5, 556 (1972)

    Google Scholar 

  19. H. Kahlert, G. Bauer: Phys. Rev. B7, 2670 (1973)

    Google Scholar 

  20. R. Petritz: Phys. Rev.110, 1254 (1958)

    Google Scholar 

  21. R.D. Larabee, W.R. Thurber: IEEE Trans. ED-27, 32 (1980)

    Google Scholar 

  22. H. Künzel, K. Ploog, K. Wünstel, B.L. Zhou: J. Electron. Mater. 13 (1984, to be published)

  23. J. Shah: Solid-State Electron.21, 43 (1978)

    Google Scholar 

  24. The concept of energy relaxation time was described, for example, in [Ref. 11, p. 647]

    Google Scholar 

  25. K. Hess: Appl. Phys. Lett.35, 484 (1979)

    Google Scholar 

  26. P.J. Price: Surf. Sci.113, 199 (1982)

    Google Scholar 

  27. T.J. Drummond, W. Kopp, H. Morkoc, M. Keever: Appl. Phys. Lett.41, 277 (1982)

    Google Scholar 

  28. M. Laviron, D. Delagebeaudeuf, P.D. Delescluse, P. Etienne, J. Chaplart, N.T. Linh: Appl. Phys. Lett.40, 580 (1982)

    Google Scholar 

  29. L. Lorek, H. Dämbkes, K. Heime, K. Ploog, G. Weimann: IEEE EDL-5 (1984, to be published)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, E.F., Ploog, K., Dämbkes, H. et al. Selectively dopedn-AlxGa1−xAs/GaAs heterostructures with high-mobility two-dimensional electron gas for field effect transistors. Appl. Phys. A 33, 183–193 (1984). https://doi.org/10.1007/BF00618754

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00618754

PACS

Navigation