Skip to main content
Log in

Temperature dependence of positron annihilation characteristics on the surfaces of graphite powders

  • Contributed Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Positron lifetime measurements have been made on graphite powders, grafoils, and pyrolytic graphite crystals with different surface areas in the temperature range between 25° and 600 °C. Three positron lifetimes were found in these systems: a short-lived component (∼0.2 ns) due to positrons in the bulk; a component (∼0.45 ns) due to surface-trapped positrons; and a long-lived component (∼2 ns) ofo-Ps in the voids or the interfacial spaces of powders. Both bulk and surface positron lifetimes increase as a function of temperature. Correlations between the intensity of surface-trapped positrons and the surface area and between Ps formation and the surface area of graphite are found. The Ps formation probability increases as a function of temperature. A thermal desorption model interprets the emission process of Ps atoms from the surface of graphite to the vacuum and gives an activation energy of 0.23±0.02 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example, J.G. Dash:Films on Solid Surfaces (Academic Press, New York 1975)

    Google Scholar 

  2. J.P. McTague, M. Nielsen, L. Passell: InPhase Transitions in Surface Films ed. by J.G. Dash, J. Ruvaldo (Plenum Press, New York 1980)

    Google Scholar 

  3. See, for example, G.A. Somorjai:Chemistry in Two Dimensional Surfaces (Cornell Press, Ithaca, NY 1982)

    Google Scholar 

  4. See examples, P. Hautojärvi (ed.):Positrons in Solids, Topics Current Phys.12 (Springer, Berlin, Heidelberg, New York 1979)

    Google Scholar 

  5. W. Brandt, A. Dupasquier:Positron Solid-State Physics (North-Holland, Amsterdam 1983)

    Google Scholar 

  6. A.P. Mills, Jr.: Appl. Phys. Lett.35, 427 (1979)

    Google Scholar 

  7. R.H. Howell, R.A. Alvarez, M. Stanek: Appl. Phys. Lett.40, 75 (1982)

    Google Scholar 

  8. W. Brandt, R. Paulin: Phys. Rev. Lett.21, 193 (1968)

    Google Scholar 

  9. S.Y. Chuang, S.J. Tao: Can. J. Phys.51, 820 (1973)

    Google Scholar 

  10. R. Paulin, R. Ripon, W. Brandt: Phys. Rev. Lett.31, 1214 (1973); Appl. Phys.4, 343 (1974)

    Google Scholar 

  11. M. Debowska, A. Baranowski: Acta Phys. Pol. A60, 679 (1981)

    Google Scholar 

  12. Y. Tsuchija, S. Noguchi, M. Hasegawa: Philos. Mag. B39, 181 (1979)

    Google Scholar 

  13. H. Morinaga, Y. Matsuoka, M. Okochi: Phys. Lett.77A, 353 (1980)

    Google Scholar 

  14. A. Gainotti, C. Ghezzi: Phys. Rev. Lett.24, 349 (1970); J. Phys. C5, 779 (1972)

    Google Scholar 

  15. See examples, W.N. Reynolds:Physical Properties of Graphite, (Elsevier, Amsterdam 1968)

    Google Scholar 

  16. A.R. Ubbelohde, F.A. Lewis:Graphite and its Crystal Compounds (Oxford 1960)

  17. B.T. Kelly:Physics of Graphite (Applied Science, London 1981)

    Google Scholar 

  18. M. Shinotomai, T. Takahashi, H. Fukushima, M. Doyama: J. Nucl. Mater.103, 779 (1981); J. Phys. Soc. Jpn.52, 694 (1983)

    Google Scholar 

  19. S. Berko, R.E. Kelly, J.S. Plaskett: Phys. Rev.106, 824 (1957)

    Google Scholar 

  20. D.H.D. West, V.J. McBrierty, C.F.G. Delaney: Appl. Phys.18, 85 (1979)

    Google Scholar 

  21. T. Iwata, H. Fukushima, M. Shimotomai, M. Doyama: Jpn. J. Appl. Phys.20, 1799 (1981)

    Google Scholar 

  22. L. G. Aravin, R.a. Salukvadze, V.P. Shantarovich, A.A. Khomenko: Phys. Stat. Sol.50a, K213 (1978)

    Google Scholar 

  23. E. Cartier, E. Heinoch, Pfluger, H.-J. Güntherodt: Solid State Commun.38 (1981); Phys. Rev. Lett.42, 272 (1981)

  24. P. Kirkegaard, M. Eldrup: Comp. Phys. Commun.7, 401 (1974)

    Google Scholar 

  25. R. Wang, H.R. Danner, H. Taub: InOrdering in Two Dimensions ed. by S.K. Sinha (North-Holland, New York 1980) p. 219

    Google Scholar 

  26. The structures of grafoil were discussed in detail in [1]. The currently used grafoil sheet was a kind gift from H. Taub, the detail information of this grafoil can be found in H. Taub, H.R. Danner, Y.P. Sharma, H.L. McMurry, R.M. Brugger: Surf. Sci.76, 50 (1978)

    Google Scholar 

  27. R.M. Nieminen, M.J. Puska: Phys. Rev. Lett.50, 281 (1983)

    Google Scholar 

  28. W. Brandt: Appl. Phys.5, 1 (1974)

    Google Scholar 

  29. M. Eldrup, V.P. Shantarovich, O.E. Mogensen: Chem. Phys.11, 129 (1975); O.A. Anisimov, YuN. Molin: High Energ. Chem.9, 493 (1976)

    Google Scholar 

  30. I.J. Rosenberg, A.H. Weiss, K.F. Canter: J. Vac. Sci. Technol.17, 753 (1980)

    Google Scholar 

  31. S.Y. Chuang, S.J. Tao: Can. J. Phys.51, 820 (1973)

    Google Scholar 

  32. I.K. MacKenzie: Phys. Lett.77A, 476 (1980)

    Google Scholar 

  33. A.P. Mills, Jr.: Phys. Rev. Lett.41, 1828 (1978)

    Google Scholar 

  34. K.G. Lynn: Phys. Rev. Lett.43, 391 (1979)

    Google Scholar 

  35. A.P. Mills, Jr.: Solid State Commun.31, 623 (1979)

    Google Scholar 

  36. D.E. Gray: (ed.)Am. Inst. Phys. Handbook, 3rd ed. (McGraw-Hill, New York 1982)

    Google Scholar 

  37. J. Suzanne, M. Bienfait: Acta. Cryst. A. (Denmark) A28, 5150 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Preliminary results of this paper were presented at the March Meeting of American Physical Society, Los Angeles. Bull. Am. Phys. Soc.28, 347 (1983)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jean, Y.C., Venkateswaran, K., Parsai, E. et al. Temperature dependence of positron annihilation characteristics on the surfaces of graphite powders. Appl. Phys. A 35, 169–176 (1984). https://doi.org/10.1007/BF00616971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616971

PACS

Navigation