Skip to main content
Log in

A negative differential conductivity due to recombination and impact ionization in semiconductors at low temperatures

  • Contributed Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The probability of impact ionization and the recombination time are known to increase monotonically with the electric fieldE. I show that at low temperatures both functions achieve a maximum and decrease in the electric field range where the emission of optical phonons with subsequent impurity scattering dominate. This nonmonotonicity results in three different types of N-shaped negative differential conductivity (n-ndc). The carrier concentration and the current decrease whenE increases due to decreasing of the impact ionization probability for weakly compensated samples and of the recombination time for highly compensated samples. At the antithreshold electric-field impact ionization dies out, which results in a dramatic decrease of the current for intermediately compensated samples. This huge n-ndc could be used in a novel type of the Gunn diode. The essential increase of threshold electric field of impact ionization is also predicted, and the effect could enhance the efficiency of photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hartnagel:Semiconductor Plasma Instabilities (American Elsevier, New York 1969)

    Google Scholar 

  2. J. Pozhela:Plasma and Current Instabilities in Semiconductors (Oxford, Frankfort 1981)

    Google Scholar 

  3. S.W. Teitsworth, R.M. Westervelt, E.E. Haller: Phys. Rev. Lett.51, 825 (1983)

    Google Scholar 

  4. R.J. Keyes (ed.): Optical and Infrared Detectors, 2nd ed., Topics Appl. Phys.19 (Springer, Berlin, Heidelberg 1980)

    Google Scholar 

  5. S.W. Teitsworth, R.M. Westervelt: Phys. Rev. Lett.53, 2587 (1984)

    Google Scholar 

  6. J. Peinke, A. Mühlbach, R.P. Huebener, J. Parisi: Phys. Lett.108A, 407 (1985)

    Google Scholar 

  7. Z.S. Gribnikov, V.A. Kochelap: Zh. Eksp. Teor. Fiz.58, 1046 (1970) [Sov. Phys.-JETP31, 562 (1970)]

    Google Scholar 

  8. R.I. Rabinovich: Fiz. Tekh. Poluprov.3, 996 (1969) [Sov. Phys.-Semicond.3, 439 (1970)], Fiz. Tverd. Tela,12, 577 (1970) [Sov. Phys.-Solid State12, 440 (1970)]

    Google Scholar 

  9. S.P. Ashmontas, Ju.K. Pozhela, L.E. Subachyus: Pis'ma Zh. Eksp. Teor. Fiz.33, 580 (1981) [JETP Lett.33, 564 (1981)]

    Google Scholar 

  10. S.H. Koenig, R.D. Brown, W. Schillinger: Phys. Rev.128, 1668 (1962)

    Google Scholar 

  11. V.F. Bannaya, L.I. Veselova, E.M. Gershenson, V.A. Chuenkov: Fiz. Tekh. Poluprov.7, 1972 (1973) [Sov. Phys.-Semicond.7, 1315 (1974)]

    Google Scholar 

  12. V.N. Abamukov, I.N. Yassievich: Zh. Eksp. Theor. Fiz.71, 657 (1976) [Sov. Phys.-JETP44, 345 (1976)]

    Google Scholar 

  13. M. Lax: Phys. Rev.119, 1502 (1960)

    Google Scholar 

  14. S. Komiyama: Adv. Phys.31, 255 (1982)

    Google Scholar 

  15. Ju.K. Pozhela, E.V. Starikov, P.M. Shiktorov: Phys. Lett.96A, 361 (1983); Fiz. Tekh. Poluprovodn.17,904 (1983) [Sov. Phys.-Semicond.17, 566 (1983)]

    Google Scholar 

  16. II. Vosilius, I.B. Levinson: Zh. Eksp. Teor. Fiz.50, 1660 (1966) [Sov. Phys.-JETP23, 1104 (1966)]

    Google Scholar 

  17. E.M. Conwell: High Field Transp. in Semicond.,Solid State Phys. 9 (Academic, New York 1967)

    Google Scholar 

  18. H.G. Reik, H. Risken: Phys. Rev.124, 777 (1961)

    Google Scholar 

  19. V.N. Abamukov, V.I. Perel', I.N. Yassievich: Fiz. Tekh. Poluprovodn.12, 3 (1978) [Sov. Phys.-Semicond12, 1 (1978)]

    Google Scholar 

  20. B.I. Davydov, I.M. Shmushkevich: Usp. Fiz. Nauk24, 21 (1940)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research was supported by the Alexandervon-Humboldt-Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitin, V.V. A negative differential conductivity due to recombination and impact ionization in semiconductors at low temperatures. Appl. Phys. A 39, 123–127 (1986). https://doi.org/10.1007/BF00616829

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616829

PACS

Navigation