Skip to main content
Log in

Method of calculating the fatigue of laminated composite plates and shells

  • Published:
Mechanics of Composite Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. V. A. Limonov, V. G. Perevozchikov, and V. P. Tamuzh, “Fatigue of composite laminates with different reinforement schemes. 1. Experimental results,” Mekh. Kompozitn. Mater., No. 5, 786–796 (1988).

    Google Scholar 

  2. V. G. Perevozchikov, V. A. Limonov, V. D. Protasov, and V. P. Tamuzh, “Static and fatigue strength of unidirectional composites under the simultaneous action of shear stresses and transverse tension-compression stresses,” Mekh. Kompozitn. Mater., No. 5, 845–851 (1988).

    Google Scholar 

  3. S. V. Serensen, “Strength conditions under alternating loads for plane and volumetric stress states,” Inzh. Sb.,1, No. 1, 3–12 (1941).

    Google Scholar 

  4. Z. Hashin and A. Rotem, “A fatigue failure criterion for fiber reinforced materials,” J. Compos. Mater.,7, No. 5, 443–464 (1973).

    Google Scholar 

  5. Yu. N. Rabotnov, V. P. Kogaev, A. N. Polilov, V. B. Strekalov, and A. M. Dumanskii, “Fatigue strength of unidirectional carbon-fiber-reinforced plastics in tension at an angle to the reinforcement,” Mekh. Kompozitn. Mater., No. 2, 242–246 (1985).

    Google Scholar 

  6. H. J. Gough, “Engineering steels under combined cyclic and static stresses,” Proc. J. Mech. Eng.,160 (1949).

  7. V. P. Kogaev, Calculations of Strength under Alternating Stresses [in Russian], Moscow (1977).

  8. A. K. Malmeister, “Geometry of strength theories,” Mekh. Polim., No. 4, 519–526 (1966).

    Google Scholar 

  9. A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Polymeric and Composite Materials [in Russian], Riga (1980).

  10. P. P. Oldyrev, “Correlation between the static and fatigue strength of reinforced plastics,” Mekh. Polim., No. 3, 468–474 (1973).

    Google Scholar 

  11. K. V. Zakharov, “Strength criteria.for laminates,” Plast. Massy, No. 8, 61–67 (1961).

    Google Scholar 

  12. E. V. Meshkov, V. I. Kulik, Z. T. Upitis, and R. B. Rikards, “Determination of the coefficients in tensor-polynomial fracture criteria,” Probl. Prochn., No. 9, 66–72 (1987).

    Google Scholar 

  13. B. I. Zavoichinskii, “Variational method of describing limiting loading processes,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 159–165 (1984).

    Google Scholar 

  14. Ya. A. Anderson, V. A. Limonov, V. P. Tamuzh, and V. G. Perevozchikov, “Fatigue of composite laminates with different reinforcement schemes. 2. Plane stress state and theoretical model,” Mekh. Kompozitn. Mater., No. 4, 608–616 (1989).

    Google Scholar 

  15. I. G. Teregulov, E. S. Sibgatullin, and O. A. Markin, “Limiting state of multilayered composite shells,” Mekh. Kompozitn. Mater., No. 4, 715–720 (1988).

    Google Scholar 

  16. P. P. Oldyrev, “Evaluating-anisotropy of the fatigue strength of composite materials,” Mekh. Kompozitn. Mater., No. 1, 57–61 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, No. 5, pp. 871–876, September–October, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teregulov, I.G., Sibgatullin, É.S. Method of calculating the fatigue of laminated composite plates and shells. Mech Compos Mater 26, 637–642 (1991). https://doi.org/10.1007/BF00616645

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616645

Keywords

Navigation