Skip to main content
Log in

Photothermal displacement spectroscopy: An optical probe for solids and surfaces

  • Contributed Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present a sensitive technique for determining the optical and thermal properties of solids, surfaces and thin films. This technique, photothermal displacement Spectroscopy, is based on the detection of the thermal expansion of a sample upon absorption of electromagnetic radiation. The technique is well suited for in situ ultrahigh vacuum studies and for experiments where wide temperature ranges are required. We show that surface and bulk optical absorption can be distinguished and that surface absorptions of αL=10−6/W of incident power can be measured. The theoretical basis of the signal generation is given, and excellent experimental and theoretical agreement is demonstrated. The implications of our findings to imaging and microscopy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.g., reviews by H. Lüth: Appl. Phys.8, 1 (1975)

    Google Scholar 

  2. G. Heiland, W. Mönch: Surf. Sci.37, 30 (1973)

    Google Scholar 

  3. G. Chiarotti: Recent Developments in Condensed Matter Physics1, 633 (Plenum Press, New York 1981) and references therein

    Google Scholar 

  4. A. Hordvick: Appl. Opt.16, 2827 (1977)

    Google Scholar 

  5. Other photothermal techniques include photoacoustic spectroscopy [see, for example:Optoacoustic Spectroscopy and Derection, ed. by Y.-H. Pao (Academic Press, New York 1977); W.B. Jackson, N.M. Amer: J. Appl. Phys.51, 3343 (1980)]; photothermal deflection spectroscopy [W.B. Jackson, N.M. Amer, A.C. Boccara, D. Fournier: Appl. Opt.20, 1333 (1981)]; and photothermal radiometry [S.O. Kanstad, P.-E. Nordal: Appl. Surf. Sci.6, 372 (1980)]; among others. However, none of those techniques meet all the requirements for experiments which require ultrahigh vacuum, high spatial resolution, cryogenics or the high temperatures necessary for annealing many materials

    Google Scholar 

  6. S. Ameri, E. A. Ash, V. Neumann, C. R. Petts: Electron. Lett.17, 337 (1981)

    Google Scholar 

  7. See, for example: I. Ohlidal, F. Lukes, K. Navratil: J. Phys. (Paris)38, C5–77 (1977)

    Google Scholar 

  8. Y.S. Touloukian, R.W. Powell, C.Y. Ho, M.C. Nicolaou: “Thermal Diffusivity”,Thermophysical Properties of Matter, Vol. X (IFI/Plenum Press, New York 1973)

    Google Scholar 

  9. A.C. Boccara, D. Fournier, J. Badoz: Appl. Phys. Lett.36, 130 (1980)

    Google Scholar 

  10. A.C. Boccara, D. Fournier, W. Jackson, N.M. Amer: Opt. Lett.5, 377 (1980)

    Google Scholar 

  11. M.A. Olmstead, N.M. Amer: J. Vac. Sci. Technol. B1, 751 (1983)

    Google Scholar 

  12. E.D. Huber, S.O. Sari: Rev. Sci. Instrum.50, 438 (1979)

    Google Scholar 

  13. W. Nowacki:Thermoelasticity (Pergamon Press, Oxford 1962)

    Google Scholar 

  14. J.D. Jackson:Classical Electrodynamics (Wiley, New York 1975) p. 132

    Google Scholar 

  15. S.M. Sze:Physics of Semiconductor Devices (Wiley, New York 1981)

    Google Scholar 

  16. American Institute of Physics Handbook, ed. by D.E. Gray (McGraw-Hill, New York 1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmstead, M.A., Amer, N.M., Kohn, S. et al. Photothermal displacement spectroscopy: An optical probe for solids and surfaces. Appl. Phys. A 32, 141–154 (1983). https://doi.org/10.1007/BF00616610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616610

PACS

Navigation