Skip to main content
Log in

Electronic structure of semiconductor surfaces

  • Invited Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Our present understanding of the electronic structure of semiconductor surfaces is reviewed. It is shown that photoemission and inverse photoemission are ideal techniques for probing occupied and unoccupied electronic states, respectively. All quantum numbers of an electron can be determined, i.e., energy, momentum, spin and angular symmetries. For simple systems, such as clean ordered surfaces with a small unit cell it is possible to understand the electronic structure from first-principles calculations. For complex systems, such as encountered during oxidation and dry etching one is restricted to measuring the properties determined by short-range order. Core level spectroscopy with synchrotron radiation is able to determine the oxidation state and the local bonding of surface and interface atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Sze:Physics of Semiconductor Devices (Wiley, New York 1981) p. 432

    Google Scholar 

  2. Su Y.C. Cheng: Prog. Surf. Sci.8, 181 (1977).

    Google Scholar 

  3. S.T. Pantelides (ed.)The Physics of SiO2 and its Interfaces (Pergamon, New York 1978)

    Google Scholar 

  4. R.G. Poulson: J. Vac. Sci. Technol.14, 266 (1977)

    Google Scholar 

  5. J.W. Coburn, H.F. Winters: J. Vac. Sci. Technol.16, 391 (1979)

    Google Scholar 

  6. D. Haneman: Adv. Phys.31, 165 (1982)

    Google Scholar 

  7. P.A. Bennett, M.B. Webb: Surf. Sci.104, 74 (1981)

    Google Scholar 

  8. J. Ihm, D.H. Lee, J.D. Joannopoulos, J.J. Xiong: Phys. Rev. Lett51, 1872 (1983)

    Google Scholar 

  9. R.E. Schlier, H.E. Farnsworth: J. Chem. Phys.30, 917 (1959)

    Google Scholar 

  10. G. Binnig, H. Rohrer, O. Gerber, E. Weibel: Phys. Rev. Lett.50, 120 (1983) and to be published

    Google Scholar 

  11. P. Eisenberger, W.C. Marra:Phys.Rev.Lett.46, 1081 (1981)

    Google Scholar 

  12. J. Bohr, R. Feidenhans'l, M. Nielsen, M. Toney, R.L. Johnson, I.K. Robinson: Phys. Rev. Lett.54, 1275 (1985)

    Google Scholar 

  13. F.J. Himpsel: Phys. Rev. B27, 7782 (1983)

    Google Scholar 

  14. F.J. Himpsel, Inder P. Batra: J. Vac. Sci. Technol. A2, 952 (1984) and Solid State Commun, (in press)

    Google Scholar 

  15. E.G. Mc Rae: Phys. Rev. B28, 2305 (1983)

    Google Scholar 

  16. K. Takayanagi, Y. Tanishiro, M. Takahashi, H. Motoyoshi, K. Yagi: Electron Microscopy2, 285 (1984)

    Google Scholar 

  17. K. Takayanagi, Y. Tanishiro, M. Takahashi, S. Takahashi: J. Vac. Sci. Technol. A3, 1502 (1985)

    Google Scholar 

  18. F.J. Himpsel: Adv. Phys.32, 1 (1983)

    Google Scholar 

  19. F.J. Himpsel, P. Heimann, D.E. Eastman: Phys. Rev. B24, 2003 (1981)

    Google Scholar 

  20. R.I.G. Uhrberg, G.V. Hansson, J.M. Nicholls, S.A. Flodstrom: Phys. Rev. Lett.48, 1032 (1982)

    Google Scholar 

  21. F. Solal, A. Barsky, G. Guichar, R Pinchaux, G. Jezequel, F. Solal, A. Barsky, P. Steiner, Y. Petroff: Surf. Sci.132, 40 (1983)

    Google Scholar 

  22. K.C. Pandey: Phys. Rev. Lett.47, 1913 (1981);49, 223 (1982)

    Google Scholar 

  23. J.E. Northrup, M.L. Cohen: Phys. Rev. Lett.49, 1349 (1982)

    Google Scholar 

  24. P. Chiaradia, A. Cricenti, S. Selci: Phys. Rev. Lett.52, 1145 (1984)

    Google Scholar 

  25. M.A. Olmstead, N.M. Amer: Phys. Rev. Lett.52, 1148 (1984)

    Google Scholar 

  26. J.M. Layet, J.Y. Hoarau, H. Lüth, J. Derrien: Phys. Rev. B30, 7355 (1984)

    Google Scholar 

  27. V. Dose: Prog. Surf. Sci.13, 225 (1983)

    Google Scholar 

  28. N.V. Smith: Vacuum33, 803 (1983)

    Google Scholar 

  29. F.J. Himpsel: Comm. Solid State Phys. (to be published)

  30. F.J. Himpsel, T. Fauster: J. Vac. Sci. Technol. A2, 815 (1984)

    Google Scholar 

  31. For a compilation of core level binding energies see A.A. Bakke, H.-W. Chen, W.L. Jolly: J. Electr. Spectrosc.20, 333 (1980)

    Google Scholar 

  32. K. Siegbahn, et al:ESC A-Atomic Molecular and Solid State Structure Studied by Means of Electron Spectroscopy (Almquist and Wicksells, Uppsala, Sweden 1967)

    Google Scholar 

  33. E.E. Koch (ed.):Handbook on Synchrotron Radiation (North-Holland, Amsterdam 1983)

    Google Scholar 

  34. F.R. McFeely, J.F. Morar, G. Landgren, F.J. Himpsel, N.D. Shinn: Phys. Rev. B30, 764 (1984)

    Google Scholar 

  35. F.R. McFeely, J.F. Morar, F.J. Himpsel: Surf. Sci. (in press)

  36. M. Seel, P.S. Bagus: Phys. Rev. B28, 778 (1983)

    Google Scholar 

  37. G. Hollinger, F.J. Himpsel: Appl. Phys. Lett.44, 93 (1983)

    Google Scholar 

  38. M.H. Hecht, P.J. Grunthaner, F.J. Grunthaner: Proc. 17th Intern. Conf. on the Physics of Semiconductors, ed. by J.D. Chadi and W.A. Harrison (Springer, New York 1985)p. 217

    Google Scholar 

  39. J.F. Morar, G. Hollinger, F.J. Himpsel, G.J. Hughes, J.L. Jordan: To be published

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Himpsel, F.J. Electronic structure of semiconductor surfaces. Appl. Phys. A 38, 205–212 (1985). https://doi.org/10.1007/BF00616498

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616498

PACS

Navigation