Skip to main content
Log in

Percolation in layered media — A conductivity approach

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Long square-lattice and cubic-lattice samples consisting of many layers are simulated. Within each layer, the concentration of permeable bonds is constant whereas each layer has a different concentration chosen randomly from the interval between the percolation threshold and unit concentration. The conductivity of the random resistor network corresponding to this percolation model is calculated, both parallel and perpendicular to the layers, in both two and three dimensions. For the conductivity parallel to the layers, an effective medium calculation comes within 10% of the true conductivity. For the conductivity perpendicular to the layers, percolation theory is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

G :

Total Conductivity in units of the conductivity of one bond

L :

Length of sample in units of the length of one bond

n :

Width of sample in units of the length of one bond

N :

Number of layers

p :

Probability that a bond conduct

p c :

Percolation threshold

R :

Resistivity in units of the resistivity of one bond

t :

Percolation conductivity exponent

v :

Percolation correlation length exponent

ξ :

Correlation length in units of the length of one bond

References

  1. Dullien, F. A. L.,Porous Media, Academic Press, London, 1979; Sahimi, M,Rev. Mod. Phys., in press (1992).

    Google Scholar 

  2. Stauffer, D. and Aharoy, A.,Introduction to Percolation Theory, 2nd edn, Taylor and Francis, London, 1992.

    Google Scholar 

  3. Sahimi, M. and Stauffer, D.,Chem. Engn. Sci. 46, 2225 (1991); Ilgenfritz, G. and Runge, F.,Physica A181, 69 (1992).

    Google Scholar 

  4. Roux, S., Hansen, A. and Hinrichsen, E. L.,J. Phys. A 23, L1253 (1990).

    Google Scholar 

  5. Obukhov, S.,JETP Lett.,45, 172 (1987)

    Google Scholar 

  6. Dayan, I., Gouyet, J. F. and Havlin, S.,J. Phys. A 24, L287 (1991).

    Google Scholar 

  7. Reynolds, P. J., Klein, W. and Stanley, H. E.,J. Phys. C 10, L167 (1977); Bernasconi, J.,Phys. Rev. B 18, 2185 (1978).

    Google Scholar 

  8. King, P. R.,Transport in Porous Media 4, 37 (1988)

    Google Scholar 

  9. Aharony, A., Hinrichsen, E. L., Hansen, A., Feder, J., Jøssang, T. and Hardy, H. H.,Physica A,177, 260 (1991).

    Google Scholar 

  10. Derrida, B., Zabolitzky, G., Vannimenus, J. and Stauffer, D.,J. Stat. Phys. 36, 31 (1984).

    Google Scholar 

  11. Havlin, S. and Ben Avraham, D.,Adv. Phys. 36, 695 (1987)

    Google Scholar 

  12. Normand, J. M., Herrmann, H. J. and Hajjar, M.,J. Stat. Phys. 52, 441 (1988)

    Google Scholar 

  13. Roman, H. E.,J. Stat. Phys. 58, 375 (1990)

    Google Scholar 

  14. Adler, J., Meir, Y., Aharony, A. and Harris, A. B.,Phys. Rev. 41, 9183 (1990)

    Google Scholar 

  15. Gingold, D. B. and Lobb, C. J.,Phys. Rev. B 42, 8220 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, A., Hinrichsen, E.L. & Stauffer, D. Percolation in layered media — A conductivity approach. Transp Porous Med 11, 45–52 (1993). https://doi.org/10.1007/BF00614634

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00614634

Key words

Navigation