Skip to main content
Log in

Quasiequilibrium treatment of gas-solid reactions. III. Rate of volatilization of tungsten by high-temperature oxidation

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Theoretical predictions computed on the basis of the quasiequilibrium treatment of gas-solid reactions are compared with existing experimental data on the rate of volatilization (erosion) of solid tungsten by reaction with gaseous O2 at high temperature (∼ 1300° ≲ T ≲ 3600° K) and low pressure (4.5 × 10−7\(p_{O_2 } \) ≤11.5 Torr). The only unknown parameter in the analysis is the equilibrium probability,\(\zeta '_{O_2 } \), defined as the fraction of the impinging O2 molecules that attain thermochemical equilibrium at the tungsten surface rather than undergoing nonreactive scattering (e.g., reflection). An approximate expression for\(\zeta '_{O_2 } \) is estimated by a straightforward empirical procedure that is consistent with the quasiequilibrium treatment. The theoretical results based on this expression for\(\zeta '_{O_2 } \) T because appears to be an exponential function ofT; (b) In the intermediate region, the formation of volatile oxides decreases sharply with increasingT because atomic oxygen becomes the thermodynamically favored reaction product, thereby causing ΣW to decrease with increasingT; (c) In the highest region, ΣW again increases withT as a result of the formation of WO and the sublimation of W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Langmuir,J. Am. Chem. Soc. 35, 105 (1913) and37, 1139 (1915).

    Google Scholar 

  2. J. Eisinger,J. Chem. Phys. 30, 412 (1959).

    Google Scholar 

  3. J. Becker, E. Becker, and R. Brandes,J. Appl. Phys. 32, 411 (1961).

    Google Scholar 

  4. R. A. Perkins and D. D. Crooks,J. Metals 13, 490 (1961).

    Google Scholar 

  5. E. A. Gulbransen, K. F. Andrews, and F. A. Brassart, Westinghouse Research Laboratories, Scientific Paper 62-139-120-P1 (1962) and WADC Tech. Rept. 59-575 (1960).

  6. R. A. Perkins, W. L. Price, and D. D. Crooks, Lockheed Missiles and Space Company Technical Report 6-90-62-98 (1962) and Air Force Materials Laboratory Rept. ML-TDR-64-162(1965).

  7. H. U. Anderson, University of California Lawrence Radiation Laboratory Report UCRL 10135 (1962). (We have used the data presented in Fig. 25 of this reference.)

  8. J. B. Berkowitz-Mattuck, A. Buchler, J. L. Engelke, and S. N. Goldstein,J. Chem. Phys. 39, 2722 (1963).

    Google Scholar 

  9. R. W. Bartlett,Trans. AIME 230, 1097 (1964).

    Google Scholar 

  10. P. O. Schissel and O. C. Trulson,J. Chem. Phys. 43, 737 (1965).

    Google Scholar 

  11. P. N. Walsh, J. M. Quets, and R. A. Graff,J. Chem. Phys. 46, 1144 (1967).

    Google Scholar 

  12. D. E. Rosner and H. D. Allendorf,J. Electrochem. Soc. 114, 305 (1967).

    Google Scholar 

  13. W. C. Steele, Tech. Rept. AFML-TR-65-343, Pt. II (January 1967), Avco, Wilmington, Mass.

    Google Scholar 

  14. B. McCarroll,J. Chem. Phys. 46, 863 (1967).

    Google Scholar 

  15. Yu. G. Ptushinskii and B. A. Chuikov,Surface Sci. 6, 42 (1967) and7, 90 (1967).

    Google Scholar 

  16. Yu. G. Ptushinskii and B. A. Chuikov,Fiz. Tverd. Tela 10, 722 (1968) [Soviet Phys.-Solid State 10, 565 (1968)].

    Google Scholar 

  17. A. Cassuto and J. P. Mihe,Compt. Rend. Acad. Sci. Paris C266, 863 (1968).

    Google Scholar 

  18. J. C. Batty and R. E. Stickney,J. Chem. Phys. 51, 4475 (1969).

    Google Scholar 

  19. J. C. Batty and R. E. Stickney,J. Chem. Phys. 51, 4485 (1969).

    Google Scholar 

  20. J. C. Batty and R. E. Stickney, Research Laboratory of Electronics Tech. Rept. No. 473, M.I.T. (June 1969).

  21. E. H. Kennard,Kinetic Theory of Gases (McGraw-Hill, Inc., New York, 1938), pp. 61–69.

    Google Scholar 

  22. JANAF Thermochemical Tables, D. R. Stull, ed. (Dow Chemical Co., Midland, Michigan, 1965, and Second Addendum, 1967).

    Google Scholar 

  23. P. A. Redhead,Vacuum 13, 253 (1963).

    Google Scholar 

  24. J. H. Singleton,J. Chem. Phys. 45, 2819 (1966).

    Google Scholar 

  25. R. E. Schlier,J. Appl. Phys. 29, 1162 (1958).

    Google Scholar 

  26. H. F. Winters, D. R. Denison, D. G. Bills, and E. E. Donaldson,J. Appl. Phys. 34, 1810 (1963).

    Google Scholar 

  27. R. W. Bartlett and J. W. McCamont,J. Electrochem. Soc. 112, 148 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Joint Services Electronics Program [Contract DA28-043-AMC-02536(E)] and by NASA [Grant NGR-22-009-091].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batty, J.C., Stickney, R.E. Quasiequilibrium treatment of gas-solid reactions. III. Rate of volatilization of tungsten by high-temperature oxidation. Oxid Met 3, 331–355 (1971). https://doi.org/10.1007/BF00614627

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00614627

Keywords

Navigation