Skip to main content
Log in

Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of (14C)2DG autoradiographs

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The (14C)2DG autoradiographic technique has been employed to quantitatively map glucose utilization in the mesencephalon, the diencephalon and the cerebellum, of toads in response to configurational moving visual stimuli: (i) a 0.4 cm × 2.8 cm worm-like stripe (W) which elicited prey catching responses, (ii) a 8.4 cm × 8.4 cm square (S) that released predator avoidance responses, and (iii) a 2.8 cm × 0.4 cm antiworm-like stripe (A) which elicited no motor activity.

For various brain nuclei different relationships were obtained: The optic tectum showed statistical significant higher 2DG uptake during worm-stimulation (¯X W) than during antiworm stimulation (¯X A), i.e.¯X W>¯X A. The latter visual pattern led to a 2DG utilization that was statistically significant stronger than during stimulation with a square (¯X S), i.e.¯X A>¯X S. Thus, in comparison between right and left hemisphere as well as between brains the following ratios were obtained:

Optic tectum:¯X W>¯X A>¯X S; nucleus isthmi:¯X W>¯X A-¯X s; posterodorsal lateral thalamic nucleus:¯X S>¯X A>¯X W; posteroventral lateral thalamic nucleus:¯X S>¯X A¯X W; posterior thalamic nucleus:¯X W>¯X A¯X S; anteripr division of the lateral thalamic nucleus:¯X W>¯X A¯X S; anterior thalamic nucleus:¯X A>¯X S>¯X W; nucleus of Bellonci and dorsal division of the ventrolateral thalamic nucleus:¯X W¯X A¯X S; cerebellum:¯X S¯X W>¯X A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

anterior thalamic nucleus

Cb :

cerebellum

Hyp :

hypothalamus

Ist :

nucleus isthmi

cl. Ist :

contralateral Ist

La :

lateral thalamic nucleus, anterior division

Lpd :

lateral thalamic nucleus, posterodorsal division

Lpv :

lateral thalamic nucleus, posteroventral division

MP :

medial pallium

NB/VLd :

nucleus of Bellonci and ventrolateral thalamic nucleus, dorsal division

P :

posterior thalamic nucleus

PO :

preoptic area

Sna :

snapping evoking area=ventrolateral tectum

Str :

striatum

Tec :

tectum opticum

References

  • Ewert J-P (1971) Single unit responses of the toad (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74:81–102

    Google Scholar 

  • Ewert J-P (1984) Tectal functions that underlie prey-catching and predator avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 247–416

    Google Scholar 

  • Ewert J-P (1985) Concepts in vertebrate neuroethology. Tinbergen Lecture. Anim Behav 33:1–29

    Google Scholar 

  • Ewert J-P, Burghagen H, Schürg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for preycatching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 413–475

    Google Scholar 

  • Ewert J-P, Finkenstädt Th, Weerasuriya A (1984) Concepts for neuronal correlates of Gestalt perception: Visual prey recognition in toads. In: Aoki K, Morita H, Ishii S (eds) Animal behavior — physiological and ethological approaches. Japan Scientific Societies Press, Tokyo, pp 137–159

    Google Scholar 

  • Finkenstädt Th, Ewert J-P (1983) Visual pattern discrimination through interactions of neural networks: A combined electrical brain stimulation, brain lesion, and extracellular recording study inSalamandra salamandra. J Comp Physiol 153:99–110

    Google Scholar 

  • Gallistel CR, Piner CT, Allen TO, Adler NT, Yadin E, Negin M (1982) Computer assisted analysis of 2-DG autoradiographs. Neurosci Biobehav Rev 6:409–422

    Google Scholar 

  • Gaze RM, Jacobson M (1963) A study of the retinal tectal projection during generation of the optic nerve in the frog. Proc R Soc Lond 157:420–448

    Google Scholar 

  • Gorlick DL, Constantine-Paton M, Kelley DB (1984) A14C-2-deoxyglucose autoradiographic investigation of sensory inputs to the optic tectum ofRana pipiens. J Comp Physiol A 154:617–624

    Google Scholar 

  • Gruberg ER, Lettvin JY (1980) Anatomy and physiology of a binocular system in the frogRana pipiens. Brain Res 192:313–325

    Google Scholar 

  • Grüsser O-J, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 297–385

    Google Scholar 

  • Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum, New York, pp 177–226

    Google Scholar 

  • Katte O, Hoffmann K-P (1980) Direction specific neurons in the pretectum of the frog (Rana esculenta). J Comp Physiol 140:53–57

    Google Scholar 

  • Kicliter E (1979) Some telencephalic connections in the frogRana pipiens. J Comp Neurol 185:75–86

    Google Scholar 

  • Kicliter E, Ebbesson SOE (1976) Organization of the ‘nonolfactory’ telencephalon. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 956–972

    Google Scholar 

  • Lázár G (1969) Efferent pathways of the optic tectum in the frog. Acta Biol Acad Sci Hung 20:171–183

    Google Scholar 

  • Neary TJ (1976) An autoradiographic study of the retinal projections in some members of ‘archaic’ and ‘advanced’ anuran families. Anat Rec 184:487

    Google Scholar 

  • Neary TJ, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neurol 213:262–278

    Google Scholar 

  • Neary TJ, Wilczynski W (1979) Anterior and posterior thalamic afferents in the bullfrog,Rana catesbeiana. Soc Neurosci Abstr 5:144

    Google Scholar 

  • Neary TJ, Wilczynski W (1980) Descending inputs to the optic tectum in ranid frogs. Soc Neurosci Abstr 6:629

    Google Scholar 

  • Potter HD (1969) Structural characteristics of cell and fiber populations in the optic tectum of the frog (Rana catesbeiana). J Comp Neurol 136:203–232

    Google Scholar 

  • Ryan AF, Sharp FR (1982) Localization of (3H)2-deoxyglucose at the cellular level using freeze-dried tissue and dry-looped emulsion. Brain Res 252:177–180

    Google Scholar 

  • Satou M, Ewert J-P (1984) Specification of tecto-motor outflow in toads by antidromic stimulation of tecto-bulbar/spinal pathways. Naturwissenschaften 71:52–53

    Google Scholar 

  • Scalia F (1976a) The optic pathway of the frog: Nuclear organization and connections. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 386–406

    Google Scholar 

  • Scalia F (1976b) Structure of the olfactory and accessory olfactory systems. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 213–233

    Google Scholar 

  • Schappmann A, Stryker MP (1980) Relationship between discharge frequency and glucose utilization in visual cortex of cat and kitten. Soc Neurosci Abstr. 6:314

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C)-deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Google Scholar 

  • Székely G, Lázár G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 407–434

    Google Scholar 

  • Trachtenberg MC, Ingle DJ (1974) Thalamo-tectal projections in the frog. Brain Res 79:419–430

    Google Scholar 

  • Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toad's optic tectum and sensorimotor interfacing: HRP studies and recording experiments. J Comp Physiol 144:429–434

    Google Scholar 

  • Wilczynski W (1981) Afferents to the midbrain auditory center in the bullfrog,Rana catesbeiana. J Comp Neurol 198:421–433

    Google Scholar 

  • Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: An HRP study. J Comp Neurol 173:219–229

    Google Scholar 

  • Wilczynski W, Northcutt RG (1979) Striatal efferents in the bullfrog,Rana catesbeiana. Soc Neurosci Abstr 5:147

    Google Scholar 

  • Young WG, Deutsch JA (1980) Effects of blood glucose levels on (14C) deoxyglucose uptake in rat brain tissue. Neurosci Lett 20:89–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkenstädt, T., Adler, N.T., Allen, T.O. et al. Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of (14C)2DG autoradiographs. J. Comp. Physiol. 156, 433–445 (1985). https://doi.org/10.1007/BF00613968

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00613968

Keywords

Navigation