Skip to main content
Log in

Dichroism and absorption by photoreceptors

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

Photoreceptor membrane is dichroic, i.e. its absorption depends on the direction of the electric vectorE of linearly polarised light. Dichroism depends on the arrangement and packing of the membrane (form dichroism) in addition to the orientation and dichroic properties of the chromophores associated with the membrane (intrinsic dichroism).

  1. 1.

    The amount of light absorbed by a photoreceptor depends on the orientation of the dipoles within its membrane. There is an optimum orientation for the photoreceptor to have a maximum absolute sensitivity tounpolarised light andthis orientation depends on the photoreceptor structure. In both vertebrate discs and fly rhabdomeres 1 to 6, the optimum dipole orientation is a random alignment within the plane of the membrane; while in fused rhabdoms the dipoles must be highly aligned with the microvillus axis for maximum absolute sensitivity to unpolarised light. Measurements of dichroism indicate that this optimum dipole orientation is indeed present in vertebrate outer segments, fly rhabdomeres 1 to 6 and the crustacean rhabdom. This furnishes strong evidence for the view that dipoles are orientated in the plane of the membrane to provide the majority of photoreceptors with maximum absolute sensitivity to unpolarised light. Membrane dichroism is only a secondary consequence of this objective [See Section VII].

  2. 2.

    The measured side-on dichroism of vertebrate outer segments is shown to represent aproduct of form and intrinsic dichroism, where the form factor is approximately 1.6. MSP measurements must be corrected for form dichroism to obtain the intrinsic dichroism.

  3. 3.

    An extremely simple derivation is given for the dichroism of microvilli (rhabdomeric photoreceptor) membranes in which each miorovillus is treated as if constructed from 4 vertebrate outer segment discs. The analysis accounts for both form and intrinsic dichroism.

  4. 4.

    The dichroic ratio of microvilli is estimated using contemporary knowledge of membrane and its associated chromophores. We find that the long (dipole) axis of the chromophore shows preferential axial alignment whenever the dichroic ratio of microvilli exceeds 1.67 to 1. This is to be contrasted to the value of 2 to 1 determined from the ideal (but unrealizable) model of Moody and Parriss (1962). An alignment of about 17° with the microvillus axis gives a dichroism of about 10 to 1 while perfect alignment gives 20 to 1.

  5. 5.

    We propose that the microvillus is fluid membrane rolled into a cylindrical shell. The bending causes the preferential dipole alignment when the rhodopsin molecule is asymmetrical in the membrane plane; a spherical molecule is associated with random dipole orientation in thecunved microvillus. Thus, the shape of the rhodopsin molecule is postulated to be asymmetric in crustacea and spherical in fly 1–6 microvilli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson, E. W., Fager, R. S.: The chemistry of vertebrate and invertebrate visual photoreceptors. Curr. Topics Bioenergetics5, 125–196 (1973)

    Google Scholar 

  • Born, M., Wolf, E. L.: Principles of optics. New York: Pergamon Press 1965

    Google Scholar 

  • Brown, P. K.: Rhodopsin rotates in the visual receptor membrane. Nature (Lond.) New Biol.236, 36–38 (1972)

    Google Scholar 

  • Cone, R. A.: Rotational diffusion of rhodopsin in the visual receptor membrane. Nature (Lond.) New Biol.236, 39–43 (1972)

    Google Scholar 

  • Dartnall, H. J. A.: Photosensitivity. In: Handbook of sensory physiology, vol. VII/1 (H. J. A. Dartnall, ed.). Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Goldsmith, T. H.: The polarization sensitivity-dichroic absorption paradox in arthropod photoreceptors. In: Photoreceptor optics (A. W. Snyder, R. Menzel, eds.). Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Harosi, F. I., MacNichol, Jr., E. F.: Dichroic microspectrophotometer: a computer assisted, rapid, wavelength—scanning photometer for measuring the linear dichroism of single cells. J. opt. Soc. Amer.64, 903–918 (1974)

    Google Scholar 

  • Israelachvili, J., Sammut, R., Snyder, A. W.: Birefringence and dichroism in invertebrate photoreceptors. J. opt. Soc. Amer.65, 221–222 (1975)

    Google Scholar 

  • Israelachvili, J., Sammut, R., Snyder, A. W.: Birefringence and dichroism of photoreceptors. Vision Res. (in press)

  • Kirschfeld, K.: The visual system ofMusca: Studies on optics, structure and function. In: Information processing in the visual systems of arthropods (R. Wehner, ed.), p. 61–74. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Kirschfeld, K., Snyder, A. W.: Waveguide mode effects and birefringence in fly photoreceptors. In: Photoreceptor optics (A. W. Snyder, R. Menzel, eds.). Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Laughlin, S. B., Menzel, R., Snyder, A. W.: Dichroism, absorption and the polarisation sensitivity of photoreceptors. In: Photoreceptor optics (A. W. Snyder, R. Menzel, eds.). Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Liebman, P. A.:In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J.2, 161–178 (1962)

    Google Scholar 

  • Liebman, P. A.: Microspectrophotometry of photoreceptors. In: Handbook of sensory physiology, vol. VII/1 (H. J. A. Dartnall ed.). Berlin-Heidelberg-New York: Springer: 1972

    Google Scholar 

  • Liebman, P. A.: Birefringence, dichroism and rod outer segment structure. In: Photoreceptor optics (A. W. Snyder, R. Menzel, eds.). Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Liebman, P. A., Entine, G.: Lateral diffusion of visual pigment in photoreceptor disc membrane. Science185, 457–459 (1974)

    Google Scholar 

  • Moody, M. F.: Photoreceptor organelles in animals. Biol. Rev.39, 43–86 (1964)

    Google Scholar 

  • Moody, M. F., Parriss, J. R.: The discrimination of polarised light byOctoypus: a behavioural and morphological study. Z. vergl. Physiol.44, 268–291 (1961)

    Google Scholar 

  • Mote, M. I.: Polarization sensitivity. A phenomenon independent of stimulus intensity or state of adaptation in the retinula cells of the crabsCarcinus andCallinectes. J. comp. Physiol.90, 389–403 (1974)

    Google Scholar 

  • Poo, M., Cone, R. A.: Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature (Lond.)247, 438–441 (1974)

    Google Scholar 

  • Schmidt, W. J.: Polarisationsoptische Analyse eines Eiweiß-Lipoid-Systems, erläutert am Außenglied der Sehzellen. Kolliod-Z.85, 137–148 (1938)

    Google Scholar 

  • Shaw, S. R.: Sense-cell structure and interspecies comparisons of polarised light absorption in arthropod eyes. Vision Res.9, 1031–1040 (1969)

    Google Scholar 

  • Singer, S. J., Nicholson, G. L.: The fluid mosaic model of the structure of cell membranes. Science175, 720–731 (1972)

    Google Scholar 

  • Snyder, A. W.: Polarisation sensitivity of individual retinula cells. J. comp. Physiol.83, 331–360 (1973)

    Google Scholar 

  • Snyder, A. W.: Optical properties of invertebrate photoreceptors. In: The compound eye and vision of insects (G. A. Horridge, ed.). Oxford: University Press 1974

    Google Scholar 

  • Snyder, A. W.: Photoreceptor optics—fundamental principles. In: Photoreceptor optics (A. W. Snyder, R. Menzel, eds.). Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Snyder, A. W., McIntyre, P. D.: Twisting photoreceptors. In: Photoreceptor optics (A. W. Snyder, R. Menzel, eds.). Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Snyder, A. W., Menzel, R., Laughlin, S. B.: Structure and function of the fused rhabdom. J. comp. Physiol.87, 99–135 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

while on leave from the Institute of Advanced Studies, Canberra, Australia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, A.W., Laughlin, S.B. Dichroism and absorption by photoreceptors. J. Comp. Physiol. 100, 101–116 (1975). https://doi.org/10.1007/BF00613963

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00613963

Keywords

Navigation