Skip to main content
Log in

A generalized description of the strain properties of self-reinforced polyethylene

  • Published:
Mechanics of Composite Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. L. A. Gann, “Study of the effect of the molecular characteristics of high-density polyethylene on preparation of oriented films,” Candidates Dissertation, Technical Sciences Leningrad (1983).

  2. S. A. Tsygankov, N. P. Demenchuk, and G. D. Myasnikov, “Solid-phase formation of HDPE and LDPE by hydroextrusion and properties of the extrudates,” Plast. Massy, No. 9, 37–39 (1984).

    Google Scholar 

  3. V. A. Artem'ev, V. A. Duvakin, and A. Ya. Gol'dman, “Preparation of high-strength films from polyolefins,” in: Scientific and Technological Principles of Fabrication of High-Strength and High-Modulus Materials from Flexible-Chain Polymers [in Russian], Leningrad (1982), pp. 52–60.

  4. V. A. Marikhin and G. D. Myasnikov, “Prospects for fabrication of high-strength and high-modulus polyolefin ribbons by orientational drawing,” in: Scientific and Technological Principles of Fabrication of High-Strength and High-Modulus Materials from Flexible-Chain Polymers [in Russian], Leningrad (1982), pp. 31–39.

  5. P. N. Matveev, V. A. Savitskii, and V. G. Baranov, ◂Prospects for the use of orientational crystallization of polymers,” in: Scientific and Technological Principles of Fabrication of High-Strength and High-Modulus Materials from Flexible-Chain Polymers [in Russian], Leningrad (1982), pp. 39–52.

  6. A. Richardson, B. Parsons, and I. M. Ward, “Production and properties of high stiffness polymer rod, sheet, and thick monofilament oriented by large-scale die drawing,” Plast. Rubber Proc. Appl., 6, No. 4, 347–361 (1986).

    Google Scholar 

  7. A. Kaito, K. Nakayama, and H. Kanetsu, “Preparation of high modulus polyethylene by the roller-drawing method,” J. Appl. Polym. Sci., 30, No. 3, 1241–1255 (1985).

    Google Scholar 

  8. A. Zachariades and R. S. Porter, “High modulus polymers. A new compression rolling process for polymers with high mechanical performance,” Polym. News, 12, No. 5, 138–139 (1987).

    Google Scholar 

  9. V. I. Kuzub, V. N. Kaminskii, S. A. Gordeev, A. N. D'yachkov, Yu. I. Mitchenko, and A. S. Chegolya, “Properties of high-strength, high-modulus polyethylene monofilaments,” Khim. Volokna, No. 2, 31–32 (1989).

    Google Scholar 

  10. A. V. Savitskii, I. A. Gorshkova, V. P. Demicheva, N. I. Frolova, and G. N. Shmikk, “Model of orientational strengthening and fabrication of high-strength polyethylene fibers,” Vysokomolek. Soedin., A26, No. 9, 1801–1809 (1984).

    Google Scholar 

  11. I. A. Gorshkova, G. N. Andreeva, A. V. Savitskii, and N. L. Frolova, “Properites of oriented fiber of high-molecular-weight polyethylenes,” Mekh. Kompozitn. Mater., No. 2, 326–330 (1987).

    Google Scholar 

  12. A. J. Pennings, R. J. van der Hoost, A. R. Postema, W. Hoogsten, and G. ten Brinke, “High speed gel-spinning of ultra-high molecular weight polyethylene,” Polym. Bull., 16, Nos. 2–3, 167–174 (1986).

    Google Scholar 

  13. P. Smith, P. J. Lemstra, and H. C. Booij, “Ultradrawing of High-molecular-weight polyethylene cast from solution. II. Influence of initial concentration,” J. Polym. Sci., Polym. Phys. Ed., 19, No. 5, 877–888 (1981).

    Google Scholar 

  14. Yu. M. Boiko, I. G. Kuznetsova, V. V. Kovriga, A. Ya. Gol'dman, A. M. Tarasov, V. A. Artem'ev, and G. D. Myasnikov, “Mechanical properties of polyethylene from orientational crystallization,” Mekh. Kompozitn. Mater., No. 2, 202–208 (1987).

    Google Scholar 

  15. Yu. M. Boiko and A. Ya. Gol'dman, “Viscoelastic properties of polyethylene prepared by orientational crystallization and their effect on the maximum mechanical characteristics,” Mekh. Kompozitn. Mater., No. 1, 24–31 (1990).

    Google Scholar 

  16. A. Ya. Gol'dman, Strength of Construction Plastics [in Russian], Leningrad (1979).

  17. I. I. Perepechko, Acoustic Methods of Investigation of Polymers [in Russian], Moscow (1973).

  18. A. Ya. Gol'dman, I. I. Perepechko, L. T. Kudryavtseva, V. V. Nizhegorodov, and M. A. Butuzova, “Viscoelastic properties of composite materials based on blends of crystallizable polymers,” Mekh. Kompozitn. Mater., No. 2, 207–215 (1986).

    Google Scholar 

  19. N. Alberola, J. Y. Cavaille, and J. Perez, “Mechanical spectrometry of high-density polyethylene,” J. Polym. Sci., Polym. Phys. Ed., 18, No. 4, 569–586 (1990).

    Google Scholar 

  20. I. V. Ivankina, I. G. Kuznetsova, and V. V. Kovriga, “Generalized expression for correlation of stress and strain in a wide range of temperatures for crystalline polymers with a different glass transition temperature,” Mekh. Kompozitn. Mater., No. 1, 142–145 (1984).

    Google Scholar 

  21. J. D. Ferry, Viscoelastic Properties of Polymers, 2nd ed., Wiley, New York (1961).

    Google Scholar 

  22. A. Ya. Gol'dman and A. M. Grinman, “Variant of the temperature-time analogy for partially crystalline polymers,” Mekh. Polim., No. 2, 261–269 (1974).

    Google Scholar 

  23. H. Kavai, S. Suehiro, T. Kyu, and A. Shimomura, “Rheooptical properties of spherulitic polyethylenes in relation to the alpha and beta mechanical dispersions,” Polym. Eng. Rev., Rec., Nos. 2–4, 109–136 (1983).

    Google Scholar 

  24. H. Kavai, S. Suehiro, T. Kyu, and A. Shimomura, “Rheooptical properties of spherulitic polyethylenes in relation to the alpha and the alpha and beta mechanical dispersion,” Polym. Eng. Rev., Nos. 2–4, 189–192 (1983).

    Google Scholar 

  25. R. S. Stein, R. S. Finkelstein, D. Y. Yoon, and C. Chang, “Time-temperature superposition of the fundamental relaxation processes of polyethylene,” J. Polym Sei., Polym. Symp., No. 4, 15–53 (1974).

    Google Scholar 

  26. Y. Fukui, T. Sato, M. Ushirokava, T. Asada, and S. Onogi, “Rheooptical studies of high polymers. XVII. Time-temperature superposition of time-dependent birefringence for high-density polyethylene,” J. Polym. Sci., Part A-2, 8, No. 7, 1195–1209 (1970).

    Google Scholar 

  27. I. M. Ward and M. A. Wilding, “Creep behavior of ultra-high modulus polyethylene: Influence of draw ratio and polymer composition,” J. Polym. Sci., Polym. Phys. Ed., 22, No. 4, 561–575 (1984).

    Google Scholar 

  28. J. M. Hutchinson, N. G. McCrum, and D. L. Pierce, “Study of the mechanism of creep recovery by T-jump technique,” J. Polym. Sci., Polym. Phys. Ed., No. 6, 1255–1258 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, No. 4, pp. 616–622, July–August, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boiko, Y.M., Kovriga, V.V. A generalized description of the strain properties of self-reinforced polyethylene. Mech Compos Mater 27, 392–397 (1992). https://doi.org/10.1007/BF00613566

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00613566

Keywords

Navigation