Skip to main content
Log in

The effects of temperature on the threshold of identified neurons in the locust

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    At the preferred body temperature of the locust (30 °C and above), the metathoracic fast extensor of the tibia (FETi) motorneuron will sometimes spike in response to synaptic input from the descending movement detector (DMD) visual interneurons. This does not occur at lower temperatures (Fig. 1). The mechanism of the change in excitability is investigated in FETi and other identified motorneurons over the range 18–35 °C.

  2. 2.

    Action potentials show a reversible decrease in amplitude and duration on heating (Fig. 2).

  3. 3.

    EPSP amplitudes are relatively unchanged by temperature, but their duration decreases slightly on heating (Fig. 3).

  4. 4.

    Membrane potential hyperpolarises on heating and depolarises on cooling (Fig. 4).

  5. 5.

    Membrane resistance shows a transient increase on cooling, and a transient decrease on heating (Fig. 10), but there is usually little steady-state change in resistance with temperature (Fig. 5).

  6. 6.

    Spike threshold shows a transient increase followed by a steady-state decrease on heating, and the opposite on cooling (Fig. 10). This can be demonstrated with injected current (Fig. 6), membrane depolarisation (Fig. 7), spontaneous spike frequency (Fig. 9), and naturally occurring EPSPs (Fig. 8). This change in spike threshold is regarded as the major neural correlate of the change in excitability with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baust, J.G.: Temperature-induced neural adaptations: motoneuron discharge in the Alaskan beetlePterostichus brevicornis (Carabidae). Comp. Biochem. Physiol.41 A, 205–213 (1972)

    Google Scholar 

  • Bernard, J., Gahery, Y., Boistel, J.: The effects of temperature changes applied to the cercal nerves and to the sixth abdominal ganglion of the cockroach (Blabera craniifer Burm.) In: The physiology of the insect central nervous system (eds. J.E. Treherne, J.W.L. Beament), pp. 67–72. London and New York: Academic Press 1965

    Google Scholar 

  • Boistel, J.: Caractéristiques fonctionnelles des fibres nerveuses et des récepteurs tactiles et olfactifs des insectes. Paris: Librarie Arnette 1960

    Google Scholar 

  • Burkhardt, D.: Die Erregungsvorgänge sensibler Ganglienzellen in Abhängigkeit von der Temperatur. Biol. Zbl.78, 22–62 (1959)

    Google Scholar 

  • Burrows, M.: The morphology of an elevator and a depressor motoneuron of the hind wing of a locust. J. comp. Physiol.83, 165–178 (1973)

    Google Scholar 

  • Burrows, M.: Monosynaptic connections between wing stretch receptors and flight motoneurones of the locust. J. exp. Biol.62, 189–219 (1975a)

    Google Scholar 

  • Burrows, M.: Co-ordinating interneurons of the locust which convey two patterns of motor commands: their connexions with ventilatory motoneurones. J. exp. Biol.63, 735–753 (1975b)

    Google Scholar 

  • Burrows, M., Horridge, G.A.: The organization of inputs to motoneurones of the locust metathoracic leg. Phil. Trans. B269, 49–94 (1974)

    Google Scholar 

  • Burrows, M., Hoyle, G.: Neural mechanisms underlying behaviour in the locustSchistocerca gregaria. III. Topography of limb motoneurones in the metathoracic ganglion. J. Neurobiol.4, 169–186 (1973)

    Google Scholar 

  • Burrows, M., Rowell, C.H.F.: Connections between descending visual interneurones and metathoracic motoneurones in the locust. J. comp. Physiol.85, 221–234 (1973)

    Google Scholar 

  • Burrows, M., Siegler, M.V.S.: Transmission without spikes between locust interneurones and motoneurones. Nature (Lond.)262, 222–224 (1976)

    Google Scholar 

  • Crossman, A.R., Kerkut, G.A., Pitman, R.M., Walker, R.J.: Electrically excitable nerve cell bodies in the central ganglion of two insect species,Periplaneta americana andSchistocerca gregaria. Investigation of cell geometry and morphology by intracellular dye injection. Comp. Biochem. Physiol.40 A, 579–596 (1971)

    Google Scholar 

  • Goldman, L., Hahin, R., Begenisch, T.: Sodium flux, action potential and temperature dependence. Nature (Lond.)257, 516–517 (1975)

    Google Scholar 

  • Goodman, C.S., Heitler, W.J.: Isogenic locusts and genetic variability in the effects of temperature on neuronal threshold. J. comp. Physiol.117, 183–207 (1977)

    Google Scholar 

  • Guttman, R.: Effect of temperature on the potential and current thresholds of axon membrane. J. gen. Physiol.46, 257–266 (1962)

    Google Scholar 

  • Heitler, W.J., Burrows, M.: The locust jump: II. Neural circuits of the motor programme. J. exp. Biol.66, 221–241 (1977)

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F.: The dual effect of membrane potential on sodium conductance in the giant axon ofLoligo. J. Physiol. (Lond.)116, 497–506 (1952)

    Google Scholar 

  • Hodgkin, A.L., Katz, B.: The effect of temperature on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.)109, 240–249 (1949)

    Google Scholar 

  • Hoyle, G.: A function for neurons (DUM) neurosecretory on skeletal muscle of insects. J. exp. Zool.189, 401–406 (1974)

    Google Scholar 

  • Hoyle, G., Burrows, M.: Neural mechanisms underlying behaviour in the locustSchistocerca gregaria. I. Physiology of identified motoneurons in the metathoracic ganglion. J. Neurobiol.4, 43–67 (1973)

    Google Scholar 

  • Hoyle, G., O'Shea, M.: Intrinsic rhythmic contractions in insect skeletal muscle. J. exp. Zool.189, 407–412 (1974)

    Google Scholar 

  • Huxley, A.F.: Ion movements during nerve activity. Ann. N.Y. Acad. Sci.81, 221–246 (1959)

    Google Scholar 

  • Katz, B., Miledi, R.: The release of acetylcholine from nerve endings by graded electrical pulses. Proc. roy. Soc. B167, 23–38 (1967)

    Google Scholar 

  • Kerkut, G.A., Taylor, B.J.R.: The effect of temperature changes on the activity of poikilotherms. Behaviour13, 259–289 (1958)

    Google Scholar 

  • Marchiafava, P.L.: The effect of temperature change on membrane potential and conductance inAplysia giant nerve cell. Comp. Biochem. Physiol.34, 847–852 (1970)

    Google Scholar 

  • Mellanby, K.: Low temperature and insect activity. Proc. roy. Soc. B127, 473–489 (1939)

    Google Scholar 

  • Merickel, M., Kater, S.B.: Neuronal change: compensatory acclimation of the contribution of an electrogenic pump to the resting potential. J. comp. Physiol.94, 195–206 (1974)

    Google Scholar 

  • Murray, R.W.: The effect of temperature on the membrane properties of neurons in the visceral ganglion ofAplysia. Comp. Biochem. Physiol.18, 291–303 (1966)

    Google Scholar 

  • Nicolls, J.G., Purves, D.: A comparison of chemical and electrical synaptic transmission between single sensory cells and a motoneurone in the central nervous system of the leech. J. Physiol. (Lond.)225, 637–656 (1972)

    Google Scholar 

  • Pearson, K.G., Fourtner, C.R.: Nonspiking interneurons in walking system of the cockroach. J. Neurophysiol.38, 33–52 (1975)

    Google Scholar 

  • Pierau, F.-K., Klee, M.R., Klussmann, F.W.: Effects of local hypo- and hyperthermia on mammalian spinal motoneurones. Fed. Proc.28, 1006–1010 (1969)

    Google Scholar 

  • Rowell, C.H.F.: The orthopteran descending movement detector (DMD) neurons: a characterisation and review. Z. vergl. Physiol.73, 167–194 (1971)

    Google Scholar 

  • Schauf, C.L.: Temperature dependence of the ionic current kinetics ofMyxicola giant axons. J. Physiol. (Lond.)235, 197–205 (1973)

    Google Scholar 

  • Strelnikov, I.D.: On the question of heat production of insects in relation to movement and sunshine. Bull. Inst. Sci. Leshaft19, 243–255 (1935) (in Russian)

    Google Scholar 

  • Strelnikov, I.D.: The effect of solar radiation and microclimate upon body temperature and behaviour of larvae ofLocusta migratoria. L. Trav. Inst. Zool. Acad. Sci. URSS2, 637–733 (1936) (in Russian)

    Google Scholar 

  • Usherwood, P.N.R., Grundfest, H.: Peripheral inhibition in skeletal muscle of insects. J. Neurophysiol.28, 497–518 (1965)

    Google Scholar 

  • Uvarov, B.: Grasshoppers and Locusts: a handbook of general acridology, Vol. I. Cambridge: Cambridge University Press 1966

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by USPHS grant NS 09404 to C.H.F.R. We are happy to be able to thank Dr. K.G. Pearson for his contribution to the initial discussions which led to this work, and Dr. M.R. O'Shea who suggested to us the use of the DUM neurons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heitler, W.J., Goodman, C.S. & Rowell, C.H.F. The effects of temperature on the threshold of identified neurons in the locust. J. Comp. Physiol. 117, 163–182 (1977). https://doi.org/10.1007/BF00612785

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612785

Keywords

Navigation