Skip to main content
Log in

A structural-mechanical model of amorphous-crystalline polymers

  • Published:
Mechanics of Composite Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. G. Capaccio, A. G. Gibson, and I. M. Ward, “Drawing and hydrostatic extrusion of ultrahigh modulus polymers,” in: Ultrahigh Modulus Polymers [Russian translation], Leningrad (1983), pp. 12–62.

  2. I. M. Ward, Mechanical Properties of Solid Polymers, Wiley, New York (1971).

    Google Scholar 

  3. L. E. Nielsen, Mechanical Properties of Polymers and Composites, Vols. 1 and 2, Marcel Dekker, New York (1974).

    Google Scholar 

  4. V. P. Privalko, Molecular Structure and Properties of Polymers [in Russian], Leningrad (1986).

  5. A. Bondi, “On the predictability of the high-frequency elastic modulus of semicrystalline polymers as a function of crystallinity,” J. Polym. Sci., 83–87 (1967).

  6. M. Takayanagi, K. Imada, and T. Kajiyama, “Mechanical properties and fine structure of drawn polymers,” J. Polym. Sci., Part C, No. 15, 263–281 (1966).

    Google Scholar 

  7. A. Odajima and T. Maeda, “Calculation of the elastic constant and the lattice energy of the polyethylene crystal,” J. Polym. Sci., Part C, No. 15, 55–74 (1966).

    Google Scholar 

  8. C. P. Buckley and N. G. Mecrumm, “The thermal expansion betwen 0 and −190 °C,” J. Mater. Sci.,8, No. 8, 1123–1135 (1973).

    Google Scholar 

  9. M. W. Darlingron, B. H. Conkey, and D. W. Sanders, “Mechanical and structural studies of low-density polyethylene,” J. Mater. Sci.,6, No. 12, 1447–1464 (1971).

    Google Scholar 

  10. N. M. Ladiesky and I. M. Ward, “Measurement of oriented low-density polyethylene,” J. Macromol. Sci.,B5, No. 4, 745–773 (1971).

    Google Scholar 

  11. C. P. Buckley, “Elastic and thermal expansion anisotropy of oriented linear polyethylene,” J. Mater. Sci.,9, No. 1, 100–108 (1974).

    Google Scholar 

  12. L. E. Nielsen and F. D. Stockton, “Theory of modulus of crystalline polymers,” J. Polym. Sci.,A1, No. 6, 1995–2002 (1963).

    Google Scholar 

  13. A. E. Zachariades, V. G. Mead, and R. S. Porter, “Current advances in the technology of fabrication of polyethylene in the ultraoriented state by the method of solid-phase extrusion,” in: Ultrahigh Modulus Polymers [Russian translation], Leningrad (1983), pp. 63–89.

  14. D. M. Gezovich and P. H. Geil, “Deformation of polyethylene oxide, nylon-II, and polyethylene terephthalate by rolling,” J. Mater. Sci.,6, No. 6, 531–536 (1971).

    Google Scholar 

  15. A. Peterlin, “Mechanical properties and fibrillar structure,” in: Ultrahigh Modulus Polymers [Russian translation], Leningrad (1983), pp. 205–240.

  16. V. A. Kargin and G. A. Slonimskii, Outline of the Physical Chemistry of Polymers [in Russian], Moscow (1967).

  17. P. H. Geil, Polymer Single Crystals, Interscience, New York (1963).

    Google Scholar 

  18. V. A. Marikhin and L. P. Myasnikova, The Supermolecular Structure of Polymers [in Russian], Leningrad (1977).

  19. G. P. Andrianova, Physical Chemistry of Polyolefins [in Russian], Moscow (1974).

  20. Yu. I. Matveev and A. A. Askadskii, Chemical Structure and Physical Properties of Polymers [in Russian], Moscow (1983).

  21. G. A. Vanin, Micromechanics of Composite Materials [in Russian], Kiev (1985).

  22. A. Kelly and H. Groves, Crystallography and Defects in Crystals [Russian translation], Moscow (1974).

  23. A. I. Lur'e, Spatial Problems in the Theory of Elasticity [in Russian], Moscow (1955).

  24. K. A. Gasparyan, Ya. Goloubek, V. G. Baranov, and S. Ya. Frenkel', “Diffractometric study of the transition from spherulitic to orientational supermolecular order,” Vysokomolek. Soedin.,A7, No. 1, 86–95 (1968).

    Google Scholar 

  25. V. A. Kargin, V. I. Selikhova, and P. S. Markova, “Study of extension and contraction of polyethylene films with spherulitic structures,” Vysokomolek. Soedin.,A7, No. 9, 1495–1499 (1965).

    Google Scholar 

  26. V. G. Baranov, K. A. Gasparyan, and S. Ya. Frenkel', “Observation of a direct genetic correlation between spherulitic and orientational supermolecular order,” Dokl. Akad. Nauk SSSR,183, No. 1, 137–140 (1968).

    Google Scholar 

  27. G. A. Patrikeev, “Backbone coherence and quantitative relations of macromolecule mechanics,” Dokl. Akad. Nauk SSSR,3, 636–639 (1968).

    Google Scholar 

  28. G. Rauman and D. W. Saunders, “Anisotropy of Young's modulus in drawn polyethylene,” Proc. Phys. Soc.,77, No. 197, 1028–1035 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, No. 4, pp. 585–593, July–August, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostritskii, V.V. A structural-mechanical model of amorphous-crystalline polymers. Mech Compos Mater 26, 419–426 (1991). https://doi.org/10.1007/BF00612610

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612610

Keywords

Navigation