Skip to main content
Log in

Pull-out of fibers from the matrix on the surface of a crack in a composite

  • Published:
Mechanics of Composite Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. S. T. Mileiko and Yu. N. Rabotnov, “Mechanics of fiber composites,” Usp. Mekh.,3, No. 1, 3–25 (1980).

    Google Scholar 

  2. J. M. Hedgepeth and P. Van Dyke, “Local stress concentration in imperfect filamentary composite materials,” J. Compos. Mater.,1, 294–309 (1967).

    Google Scholar 

  3. J. G. Goree and R. S. Gross, “Analysis of a unidirectional composite containing broken fibers and matrix damage,” Eng. Fract. Mech.,13, No. 3, 563–578 (1980).

    Google Scholar 

  4. L. R. Dharani, W. F. Jones, and J. G. Goree, “Mathematical modeling of damage in unidirectional composites,” Eng. Fract. Mech.,17, No. 6, 555–574 (1983).

    Google Scholar 

  5. A. M. Mikhailov, “Fracture of a unidirectional glass-plastic,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5, 131–139 (1973).

    Google Scholar 

  6. Y. Korczynskij, S. J. Harris, and J. G. Morley, “The influence of reinforcing fibers on the growth of cracks in brittle matrix composites,” J. Mater. Sci.,16, 1533–1547 (1981).

    Google Scholar 

  7. D. J. Hannant, D. C. Hudges, and A. Kelly, “Toughening of cement and other brittle solids with fibres,” Philos. Trans. R. Soc.,A310, 175–190 (1983).

    Google Scholar 

  8. A. P. S. Selvadurai, “Concentrated body force loading of an elastically bridged penny-shaped flaw in a unidirectional fibre reinforced composite,” Int. J. Fract.,21, No. 2, 149–159 (1983).

    Google Scholar 

  9. B. Budianski, J. W. Hutchinson, and A. G. Evans, “Matrix fracture in fiber-reinforced ceramics,” J. Mech. Phys. Solids,34, No. 2, 167–189 (1986).

    Google Scholar 

  10. H. Stang, “A double inclusion model for microcrack arrest in fibre-reinforced brittle materials,” J. Mech. Phys. Solids,35, No. 3, 325–342 (1987).

    Google Scholar 

  11. V. M. Entov and R. L. Salganik, “Toward a Prandtl model of brittle fracture,” Inzh. Zh. Mekh. Tverd. Tela, No. 6, 87–99 (1968).

    Google Scholar 

  12. J. Tirosh, “The effect of plasticity and crack blunting on the stress distribution in orthotropic composite materials,” J. Appl. Mech.,40, No. 3, 785–790 (1973).

    Google Scholar 

  13. G. M. Newaz and J.-Y. Yung, “Modelling split crack growth behavior in a unidirectional composite under fatigue load,” Eng. Fract. Mech.,29, No. 4, 483–495 (1988).

    Google Scholar 

  14. S. G. Lekhnitskii, Theory of Fatigue of Anisotropic Bodies [in Russian], Moscow (1977).

  15. Composite Materials (Handbook) [in Russian], Kiev (1985).

  16. G. A. Cooper and A. Kelly, “Tensile properties of fibre-reinforced metals: fracture mechanics,” J. Mech. Phys. Solids,15, No. 4, 279–297 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, No. 2, pp. 237–247, March–April, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobelev, V.V., Rikhter, A.A. Pull-out of fibers from the matrix on the surface of a crack in a composite. Mech Compos Mater 26, 188–197 (1990). https://doi.org/10.1007/BF00612318

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612318

Navigation