Skip to main content
Log in

Oxidation of high-chromium Ni-Cr alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation of binary Ni-Cr alloys containing 44 and 50 wt. % Cr has been studied over a range of oxygen partial pressures at temperatures between 800 and 1100°C. The effects of cold work, surface preparation, and distribution of the Cr-rich second phase have been studied. The oxidation behavior is complex and cannot be described by a single model. The oxide grows by short-circuit diffusion as well as bulk transport through Cr 2 O 3 scales. The scale-growth mechanism includes extensive metal-oxide separation requiring Cr vapor transport to the scale, compressive stresses within the oxide which result in scale bulging and cracking, and the formation of a second oxide layer which results in voids being incorporated into the scale. Any factor which reduces the oxide grain size, such as cold work, finer distribution of the Cr-rich α phase or reduced oxygen pressure, results in an increased oxidation rate of binary alloys because of an increased number of grain-boundary short-circuit diffusion paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Johnson, D. P. Whittle, and J. Stringer,Corros. Sci. 15, 721 (1975).

    Google Scholar 

  2. M. R. Wootton and N. Birks,Corros. Sci. 15, 1 (1975).

    Google Scholar 

  3. P. L. Norman and J. D. Harston, “An Evaluation of the Hot Corrosion Resistance of Commercial High Chromium Nickel-Base Alloys for Use in Gas Turbines,” inDeposition and Corrosion in Gas Turbines, A. B. Hart and A. J. B. Cutler, eds. (Wiley, New York, 1973), p. 260.

    Google Scholar 

  4. C. S. Giggins and F. S. Pettit,Trans. Am. Inst. Min. Metall. Pet. Eng. 245, 2495 (1969).

    Google Scholar 

  5. N. Birks and H. Rickert,J. Inst. Met. 91, 308 (1962–63).

    Google Scholar 

  6. J. C. Wood and T. Hodgkiess,J. Electrochem. Soc. 113, 319 (1966).

    Google Scholar 

  7. C. E. Lowell,Oxid. Met. 7, 95 (1973).

    Google Scholar 

  8. C. Wagner,Corros. Sci. 8, 889 (1968).

    Google Scholar 

  9. P. Kofstad and A. Z. Hed,J. Electrochem. Soc. 116, 1542 (1969).

    Google Scholar 

  10. G. C. Wood and D. P. Whittle,J. Electrochem. Soc. 115, 126 (1968).

    Google Scholar 

  11. C. S. Tedmon, Jr.,J. Electrochem: Soc. 113, 766 (1966).

    Google Scholar 

  12. H. Lewis,Metallurgia. 83, 3 (1971).

    Google Scholar 

  13. C. S. Giggins and F. S. Pettit,Metall. Trans. 2, 1071 (1971).

    Google Scholar 

  14. J. Stringer,Oxid. Met. 5, 49 (1972).

    Google Scholar 

  15. G. M. Ecer and G. H. Meier, “Oxidation of High-Chromium Binary Ni-Cr Alloys and Ternary Alloys Containing Ce, Zr, and Ti,” inProperties of High Temperature Alloys, Z. A. Foroulis and F. S. Pettit eds. (The Electrochemical Society Princeton, N.J., 1977), p. 279.

    Google Scholar 

  16. G. M. Ecer and G. H. Meier,Scripta Metall. 1189 (1973).

  17. P. R. Kofstad and A. Z. Hed,J. Electrochem. Soc. 116, 1542 (1969).

    Google Scholar 

  18. W. C. Hagel and A. V. Seybolt,J. Electrochem. Soc. 108, 1146 (1961).

    Google Scholar 

  19. W. C. Hagel,J. Am. Ceram. Soc. 48, 70 (1975).

    Google Scholar 

  20. F. S. Pettit, J. A. Goebel, and G. W. Goward,Corros. Sci. 9, 903 (1969).

    Google Scholar 

  21. G. C. Wood, J. Hodgkiess, and D. P. Whittle,Corros. Sci. 6, 129 (1966).

    Google Scholar 

  22. S. I. Ali and G. C. Wood,J. Inst. Met. 97, 6 (1969).

    Google Scholar 

  23. V. R. Howes,Corros. Sci. 8, 729 (1968).

    Google Scholar 

  24. D. P. Whittle and G. C. Wood,J. Electrochem. Soc. 115, 133 (1968).

    Google Scholar 

  25. E. A. Gulbransen and K. F. Andrew,Trans. Am. Inst. Min. Metall. Pet. Eng. 221, 1247 (1961).

    Google Scholar 

  26. O. Kubaschewski and G. Heymer,Acta Metall. 8, 416 (1960).

    Google Scholar 

  27. H. Davies and W. W. Smeltzer,J. Electrochem. Soc. 121, 543 (1974).

    Google Scholar 

  28. W. C. Hagel,Trans. Am. Soc. Met. 56, 583 (1963).

    Google Scholar 

  29. J. Stringer, A. Z. Hed, G. R. Wallwork, and B. A. Wilcox,Corros. Sci. 12, 625 (1972).

    Google Scholar 

  30. D. Caplan and G. I. Sproule,Oxid. Met. 9, 459 (1975).

    Google Scholar 

  31. D. Caplan, A. Harvey, and M. Cohen,Corros. Sci. 3, 161 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is based on a portion of a thesis by G. M. Ecer submitted to the University of Pittsburgh in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Metallurgical and Materials Engineering.

Formerly graduate student. Department of Metallurgical and Materials Engineering. University of Pittsburgh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ecer, G.M., Meier, G.H. Oxidation of high-chromium Ni-Cr alloys. Oxid Met 13, 119–158 (1979). https://doi.org/10.1007/BF00611976

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00611976

Key words

Navigation