Skip to main content
Log in

Compositional changes due to the removal of one constituent in an alloy by a surface reaction

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The depletion of an alloy by the selective removal of one element is considered when various rate laws apply. Duhamel's technique has been employed to obtain analytical solutions for the change in alloy composition with time. The effect of the depletion of the matrix by selective oxidation on the subsequent oxidation behavior of the alloy is discussed in terms of operating temperature of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

concentration of solute (g cm−3)

C m :

bulk concentration of solute (g cm−3)

C(x, t) :

concentration of solute at distancex from surface after timet(g cm−3)

t :

time

x :

distance

ΔW o :

increase in weight due to takeup of oxygen

ΔW m :

change in weight due to metal entering the oxide

M o :

molecular weight of anion

M m :

molecular weight of cation

Z :

valency of cation

θ :

2M m/M o

k l :

linear rate constant (g cm−2 sec−1)

k p andk′ p :

parabolic rate constants (g2 cm−4 sec−1)

k e andk′ e :

logarithmic rate constants

D :

diffusion coefficients of solute in metal

References

  1. C. Wagner,J. Electrochem. Soc. 99, 369 (1952).

    Google Scholar 

  2. D. P. Whittle, D. J. Evans, D. B. Scully, and G. C. Wood,Acta Metall. 15, 1421 (1967).

    Google Scholar 

  3. D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully,Acta Metall. 15, 1747 (1967).

    Google Scholar 

  4. R. Hales. A. F. Smith, and J. C. Killeen, Proc. BNES Conf. on Corrosion of Steels in CO2 (Reading, 1974).

  5. J. Crank,Mathematics of Diffusion (Oxford University Press, Oxford, 1967), p. 34.

    Google Scholar 

  6. H. L. Solbert, G. A. Hawkins, and A. A. Potter,Trans. ASME 64, 303 (1942).

    Google Scholar 

  7. S. J. Allan, J. F. Norton, and L. A. Popple, Proc. BNES Conf. on Corrosion of Steels in CO2 (Reading, 1974).

  8. P. L. Surman, J. Bettelheim, R. B. Dooley, J. Graham, B. Meadowcroft, and P. C. Rowlands, Proc. BNES Conf. on Corrosion of Steels in CO2 (Reading, 1974).

  9. A. W. Thorley and C. Tyzack, “Liquid Alkali Metals,” in Proc. Intern. Conf. at Nottingham University, p. 257.

  10. J. W. Koger,Adv. Corros. Sci. Technol. 4, 245 (1974).

    Google Scholar 

  11. G. B. Gibbs and R. Hales, CEGB Report No. RD/B/N2706 (1973).

  12. R. Hales and A. C. Hill,Corros. Sci. 12, 843 (1974).

    Google Scholar 

  13. W. S. Carslaw and J. C. Jaeger,Conduction of Heat in Solids (Oxford University Press, Oxford, 1962), pp. 75–77.

    Google Scholar 

  14. S. Dushman,Scientific Foundations of Vacuum Technique (John Wiley and Sons, New York, 1962).

    Google Scholar 

  15. A. F. Smith, J. C. Killeen, and R. K. Wild, CEGB Report No. RD/B/N3098 (1974).

  16. D. P. Whittle,Oxid. Met. 4, 171 (1972).

    Google Scholar 

  17. R. Hales and A, C. Hill, unpublished data.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hales, R. Compositional changes due to the removal of one constituent in an alloy by a surface reaction. Oxid Met 10, 29–40 (1976). https://doi.org/10.1007/BF00611697

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00611697

Key words

Navigation