Skip to main content
Log in

A mathematical model for internal oxidation

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A mathematical model for internal oxidation kinetics was developed using numerical methods (finite difference) and computer techniques. The flexibility of the model permitted analysis of semi-infinite and finite situations with planar, cylindrical, and spherical geometries for systems with various amounts of local solute enrichment. Graphical results are presented for subscale thickness as a function of time and local enrichment as a function of position in the subscale. The model is also applied to internal oxidation with a discontinuous change in surface oxygen concentration; a graphical solution encompassing a wide range of possible experimental conditions is presented. The use of the model in analyzing nonisothermal internal oxidation problems is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. N. Rhines, W. A. Johnson, and W. A. Anderson,Trans. AIME,147, 205 (1942).

    Google Scholar 

  2. L. S. Darken,Trans. AIME,150, 157 (1942).

    Google Scholar 

  3. C. Wagner,Z. Elektroch. 60, 772 (1959).

    Google Scholar 

  4. R. A. Rapp,Corrosion 21, 382 (1965).

    Google Scholar 

  5. J. H. Swisher,Oxidation of Metals and Alloys (American Society for Metals, Cleveland, Ohio, 1971), pp. 235–267.

    Google Scholar 

  6. J. L. Meijering,Advances in Materials Research, H. Herman, ed., (Wiley-Interscience, New York 1971), pp. 1–81.

    Google Scholar 

  7. J. L. Meijering and M. J. Druvesteyn,Philips Res. Repts. 2, 81, 260 (1947).

    Google Scholar 

  8. R. A. Rapp,Acta Metall. 9, 730 (1961).

    Google Scholar 

  9. J. L. Meijering,Z. Elektroch. 63, 824 (1959).

    Google Scholar 

  10. R. A. Tanzilli and R. W. Heckel,Trans. AIME,242, 2313 (1968).

    Google Scholar 

  11. R. D. Lanam and R. W. Heckel,Metall. Trans. 2, 2255 (1971).

    Google Scholar 

  12. R. W. Heckel and M. Balasabramaniam,Metall. Trans. 2, 379 (1971).

    Google Scholar 

  13. A. J. Hickl and R. W. Heckel,Metall. Trans. 6A, 431 (1975).

    Google Scholar 

  14. D. Murray and F. Landis,Trans. ASME, Series D,81, 106 (1959).

    Google Scholar 

  15. W. Eichenauer and G. Müller,Z. Metallkd. 53, 321, 700 (1962).

    Google Scholar 

  16. R. A. Rapp, D. F. Frank, and J. V. Armitage,Acta Metall. 12, 505 (1964).

    Google Scholar 

  17. A. Schoen, Ph.D. Thesis, University of Illinois, 1958.

  18. A. S. Nowick,J. Appl. Phys. 22, 1182 (1951).

    Google Scholar 

  19. C. T. Tomizuka and L. Slifkin,Phys. Rev. 96, 610 (1954).

    Google Scholar 

  20. W. Seith and E. Peretti,Z. Elektroch. 42, 570 (1936).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vedula, K.M., Funkenbusch, A.W. & Heckel, R.W. A mathematical model for internal oxidation. Oxid Met 16, 385–398 (1981). https://doi.org/10.1007/BF00611351

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00611351

Key words

Navigation