Skip to main content
Log in

Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement

II.Optomotor blind H31 andlobula plate-less N684, visual mutants

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The pattern of visually induced local metabolic activity in the optic lobes of two structural mutants ofDrosophila melanogaster is compared with the corresponding wildtype pattern which has been reported in Part I of this work (Buchner et al. 1984b). Individualoptomotor-blind H31 (omb) flies lacking normal giant HS-neurons were tested behaviourally, and those with strongly reduced responses to visual movement were processed for 3H-deoxyglucose autoradiography. The distribution of metabolic activity in the optic lobes ofomb apparently does not differ substantially from that found in wildtype. In the mutantlobula plate-less N684 (lop) the small rudiment of the lobula plate which lacks many small-field input neurons does not show any stimulus-specific labelling. The data provide further support for the hypothesis that small-field input neurons to the lobula plate are the cellular substrate of the direction-specific labelling inDrosophila (see Buchner et al. 1984b).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DG :

deoxyglucose

omb :

optomotor blindH31

lop :

lobula plate-lessN684

WT :

wildtype

References

  • Blondeau J, Heisenberg M (1982) The 3-dimensional optomotor torque system ofDrosophila melanogaster. Studies on wildtype and the mutant optomotor-blindH31. J Comp Physiol 145:321–329

    Google Scholar 

  • Buchner E (1976) Elementary movement detectors in an insect visual system. Biol Cybern 24:85–101

    Google Scholar 

  • Buchner E, Buchner S (1980) Mapping stimulus-induced nervous activity in small brains by3H-2-deoxyglucose. Cell Tissue Res 211:51–64

    Google Scholar 

  • Buchner E, Buchner S (1983) Anatomical localization of functional activity in insects by3H-2-deoxy-D-glucose. In: Strausfeld NJ (ed) Functional neuroanatomy. Springer, Berlin Heidelberg New York Tokyo, pp 225–238

    Google Scholar 

  • Buchner E, Buchner S, Bülthoff H (1984a) Identification of3H-deoxyglucose-labelled interneurons in the fly from serial autoradiographs. Brain Res 305:384–388

    Google Scholar 

  • Buchner E, Buchner S, Bülthoff I (1984b) Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement. I. Wildtype. J Comp Physiol A 155:471–483

    Google Scholar 

  • Bülthoff H, Götz KG, Herre M (1982) Recurrent inversion of visual orientation in the walking fly,Drosophila melanogaster. J Comp Physiol 148:471–481

    Google Scholar 

  • Eckert H, Meller K (1981) Synaptic structures of identified, motion-sensitive interneurones in the brain of the fly,Phaenicia. Ver Dtsch Zool Ges 1981:179

    Google Scholar 

  • Fischbach KF (1983) Neurogenetik am Beispiel des visuellen Systems vonDrosophila melanogaster. Habilitationsschrift, Universität Würzburg

  • Fischbach KF, Heisenberg M (1981) Structural brain mutant ofDrosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor response. Proc Natl Acad Sci Washington 78:1105–1109

    Google Scholar 

  • Götz KG (1983) Genetic defects of visual orientation inDrosophila. Verh Dtsch Zool Ges 1983:83–89

    Google Scholar 

  • Götz KG, Wenking H (1973) Visual control of locomotion in the walking fruitflyDrosophila. J Comp Physiol 85:235–266

    Google Scholar 

  • Hall JC (1982) Genetics of the nervous system inDrosophila. Q Rev Biophys 15:223–479

    Google Scholar 

  • Hall JC, Greenspan RJ (1979) Genetic analysis ofDrosophila neurobiology. Annu Rev Genet 13:129–195

    Google Scholar 

  • Hausen K (1984) The lobula-complex of the fly. Structure, function and significance in visual behavior. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 523–559

    Google Scholar 

  • Heisenberg M, Buchner E (1977) The role of retinula cell types in visual behavior ofDrosophila melanogaster. J Comp Physiol 117:127–162

    Google Scholar 

  • Heisenberg M, Götz KG (1975) The use of mutations for the partial degradation of vision inDrosophila melanogaster. J Comp Physiol 98:217–241

    Google Scholar 

  • Heisenberg M, Wolf R (1984) Vision inDrosophila. Springer, Berlin Heidelberg New York Tokyo (in press)

    Google Scholar 

  • Heisenberg M, Wonneberger R, Wolf R (1978)Optomotor-blind H31 — aDrosophila mutant of the lobula plate giant neurons. J Comp Physiol 124:287–296

    Google Scholar 

  • Heisenberg M, Blondeau J, Fischbach KF, Wolf R (1981) Structural brain mutants and the visual system ofDrosophila melanogaster. A group report, Abstracts of Taniguchi Symposium, Kyoto

  • Hengstenberg R (1973) The effect of pattern movement on the impulse activity of the cervical connective ofDrosophila melanogaster. Z Naturforsch 28c:593–596

    Google Scholar 

  • Paschma R (1982) Strukturelle und funktioneile Defekte derDrosophila Mutantelobula plate-lessN684. Diplomarbeit, Universität Würzburg

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bülthoff, I., Büchner, E. Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement. J. Comp. Physiol. 156, 25–34 (1985). https://doi.org/10.1007/BF00610663

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610663

Keywords

Navigation